Connections with prescribed curvature and Yang-Mills currents : the semi-simple case

Dennis Deturck; Hubert Goldschmidt; Janet Talvacchia

Annales scientifiques de l'École Normale Supérieure (1991)

  • Volume: 24, Issue: 1, page 57-112
  • ISSN: 0012-9593

How to cite

top

Deturck, Dennis, Goldschmidt, Hubert, and Talvacchia, Janet. "Connections with prescribed curvature and Yang-Mills currents : the semi-simple case." Annales scientifiques de l'École Normale Supérieure 24.1 (1991): 57-112. <http://eudml.org/doc/82291>.

@article{Deturck1991,
author = {Deturck, Dennis, Goldschmidt, Hubert, Talvacchia, Janet},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {real-analytic solutions; connection; principal bundle; inhomogeneous Yang-Mills equation},
language = {eng},
number = {1},
pages = {57-112},
publisher = {Elsevier},
title = {Connections with prescribed curvature and Yang-Mills currents : the semi-simple case},
url = {http://eudml.org/doc/82291},
volume = {24},
year = {1991},
}

TY - JOUR
AU - Deturck, Dennis
AU - Goldschmidt, Hubert
AU - Talvacchia, Janet
TI - Connections with prescribed curvature and Yang-Mills currents : the semi-simple case
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1991
PB - Elsevier
VL - 24
IS - 1
SP - 57
EP - 112
LA - eng
KW - real-analytic solutions; connection; principal bundle; inhomogeneous Yang-Mills equation
UR - http://eudml.org/doc/82291
ER -

References

top
  1. [1] R. BRYANT, S. S. CHERN, R. GARDNER, H. GOLDSCHMIDT and P. GRIFFITHS, Exterior Differential Systems, Math. Sci. Res. Inst. Publ., Vol. 18, Springer-Verlag, New York, Berlin, Heidelberg, 1991. Zbl0726.58002MR92h:58007
  2. [2] D. DETURCK, Existence of Metrics with Prescribed Ricci Curvature : Local Theory (Invent. Math., Vol. 65, 1981, pp. 179-207). Zbl0489.53014MR83b:53019
  3. [3] D. DETURCK and J. TALVACCHIA, Connections with Prescribed Curvature [Ann. Inst. Fourier (Grenoble), Vol. 37, fasc. 4, 1987, pp. 29-44]. Zbl0627.53027MR89d:53058
  4. [4] H. GOLDSCHMIDT, Existence Theorems for Analytic Linear Partial Differential Equations (Ann. of Math., Vol. 86, 1967, pp. 246-270). Zbl0154.35103MR36 #2933
  5. [5] H. GOLDSCHMIDT, Integrability Criteria for Systems of Non-Linear Partial Differential Equations (J. Differential Geom., Vol. 1, 1967, pp. 267-307). Zbl0159.14101MR37 #1746
  6. [6] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, London, 1963. Zbl0119.37502MR27 #2945
  7. [7] B. KOSTANT, The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group (Amer. J. Math., Vol. 81, 1959, pp. 973-1032). Zbl0099.25603MR22 #5693
  8. [8] B. KOSTANT, Lie Group Representations on Polynomial Rings (Amer. J. Math., Vol. 85, 1963, pp. 327-404). Zbl0124.26802MR28 #1252
  9. [9] B. MALGRANGE, Équations de Lie. II (J. Differential Geom., Vol. 7, 1972, pp. 117-141). Zbl0264.58009MR48 #5128
  10. [10] J. TALVACCHIA, Prescribing the Curvature of a Principal-Bundle Connection (Ph. D. thesis, University of Pennsylvania, 1989). 
  11. [11] S. P. TSAREV, Which 2-forms are Locally, Curvature Forms ? (Functional Anal. Appl., Vol. 16, 1982, pp. 235-237). Zbl0516.53014MR84e:53043
  12. [12] V. S. VARADARAJAN, On the Ring of Invariant Polynomials on a Semisimple Lie Algebra (Amer. J. Math., Vol. 90, 1968, pp. 308-317). Zbl0205.33303MR37 #1529
  13. [13] V. S. VARADARAJAN, Lie Groups, Lie Algebras and their Representations, Graduate Texts in Math., Vol. 102, Springer-Verlag, New York, Berlin, Heidelberg, 1984. Zbl0955.22500MR85e:22001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.