Connections with prescribed curvature
Dennis Deturck; Janet Talvacchia
Annales de l'institut Fourier (1987)
- Volume: 37, Issue: 4, page 29-44
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDeturck, Dennis, and Talvacchia, Janet. "Connections with prescribed curvature." Annales de l'institut Fourier 37.4 (1987): 29-44. <http://eudml.org/doc/74779>.
@article{Deturck1987,
abstract = {We discuss the problem of prescribing the curvature of a connection on a principal bundle whose base manifold is three-dimensional. In particular, we consider the local question: Given a curvature form $F$, when does there exist locally a connection $A$ such that $F$ is the curvature of $A$ ? When the structure group of the bundle is semisimple, a finite number of nonlinear identities arise as necessary conditions for local solvability of the curvature equation. We conjecture that these conditions are also generically sufficient, and we prove this for bundles whose structure group is of low rank. Nilpotent structure groups are also discussed.},
author = {Deturck, Dennis, Talvacchia, Janet},
journal = {Annales de l'institut Fourier},
keywords = {prescribed curvature; connection; principal bundle; nilpotent structure groups},
language = {eng},
number = {4},
pages = {29-44},
publisher = {Association des Annales de l'Institut Fourier},
title = {Connections with prescribed curvature},
url = {http://eudml.org/doc/74779},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Deturck, Dennis
AU - Talvacchia, Janet
TI - Connections with prescribed curvature
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 29
EP - 44
AB - We discuss the problem of prescribing the curvature of a connection on a principal bundle whose base manifold is three-dimensional. In particular, we consider the local question: Given a curvature form $F$, when does there exist locally a connection $A$ such that $F$ is the curvature of $A$ ? When the structure group of the bundle is semisimple, a finite number of nonlinear identities arise as necessary conditions for local solvability of the curvature equation. We conjecture that these conditions are also generically sufficient, and we prove this for bundles whose structure group is of low rank. Nilpotent structure groups are also discussed.
LA - eng
KW - prescribed curvature; connection; principal bundle; nilpotent structure groups
UR - http://eudml.org/doc/74779
ER -
References
top- [1] A. ASADA, Non-abelian Poincaré lemma, preprint, 1986. Zbl0607.58002MR88d:58005
- [2] A. BESSE, Einstein manifolds, Springer-Verlag, Berlin, 1987. Zbl0613.53001MR88f:53087
- [3] R. BRYANT, S. S. CHERN, R. GARDNER, H. GOLDSCHMIDT and P. GRIFFITHS, Exterior differential systems, to appear. Zbl0726.58002
- [4] E. CARTAN, Les systèmes différentiels extérieurs et leurs applications géométriques, Paris, Hermann, 1945. Zbl0063.00734MR7,520d
- [5] D. DETURCK, Existence of metrics with prescribed Ricci curvature : Local theory, Inventiones Math., 65 (1981), 179-207. Zbl0489.53014MR83b:53019
- [6] D. DETURCK and D. YANG, Local existence of smooth metrics with prescribed curvature, Contemporary Math., 51 (1986), 37-43. Zbl0587.53040MR87j:53059
- [7] J. GASQUI, Sur la résolubilité locale des équations d'Einstein, Compositio Math., 47 (1982), 43-69. Zbl0515.53015MR84f:58115
- [8] J. GASQUI, Sur l'existence locale d'immersions à courbure scalaire donnée, Math. Ann., 219 (1976), 123-126. Zbl0303.53025MR52 #12013
- [9] H. GOLDSCHMIDT, Existence theorems for analytic linear partial differential equations, Annals of Math., 86 (1967), 246-270. Zbl0154.35103MR36 #2933
- [10] H. GOLDSCHMIDT, Integrability criteria for systems of non-linear partial differential equations, J. Diff. Geom., 1 (1967), 269-307. Zbl0159.14101MR37 #1746
- [11] V. GUILLEMIN and S. STERNBERG, An algebraic model of transitive differential geometry, Bulletin Amer. Math. Soc., 70 (1967), 16-47. Zbl0121.38801MR30 #533
- [12] M. KURANISHI, Lectures on involutive systems of partial differential equations, Lecture notes, Soc. Math. Sao Paulo, 1967. Zbl0163.12001
- [13] B. MALGRANGE, Équations de Lie II, J. Diff. Geom., 7 (1972), 117-141. Zbl0264.58009MR48 #5128
- [14] J. TALVACCHIA, Ph. D Thesis, U. of Pennsylvania.
- [15] S. P. TSAREV, Which 2-forms are locally, curvature forms? Funct. Anal. and Applications, 16 (1982), 90-91 (Russian, English Translation, 16 (1982), 235-237). Zbl0516.53014MR84e:53043
- [16] D. ZHELOBENKO, Compact Lie groups and their representations, A.M.S. Translations of Math. Monographs, 40 (1973). Zbl0272.22006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.