Extremal rays on smooth threefolds

János Kollár

Annales scientifiques de l'École Normale Supérieure (1991)

  • Volume: 24, Issue: 3, page 339-361
  • ISSN: 0012-9593

How to cite

top

Kollár, János. "Extremal rays on smooth threefolds." Annales scientifiques de l'École Normale Supérieure 24.3 (1991): 339-361. <http://eudml.org/doc/82299>.

@article{Kollár1991,
author = {Kollár, János},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {positive characteristic; extremal rays; Mori's structure theorem for threefolds; deformation theory of curves in smooth threefolds},
language = {eng},
number = {3},
pages = {339-361},
publisher = {Elsevier},
title = {Extremal rays on smooth threefolds},
url = {http://eudml.org/doc/82299},
volume = {24},
year = {1991},
}

TY - JOUR
AU - Kollár, János
TI - Extremal rays on smooth threefolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1991
PB - Elsevier
VL - 24
IS - 3
SP - 339
EP - 361
LA - eng
KW - positive characteristic; extremal rays; Mori's structure theorem for threefolds; deformation theory of curves in smooth threefolds
UR - http://eudml.org/doc/82299
ER -

References

top
  1. [BPV] W. BARTH, C. PETERS and A. VAN DE VEN, Compact Complex Surfaces, Springer, 1984. Zbl0718.14023MR86c:32026
  2. [B] E. BRIESKORN, Rationale Singularitäten komplexer Flächen (Invt. Math., Vol. 4, 1968, pp. 336-358). Zbl0219.14003MR36 #5136
  3. [C] S. D. CUTKOSKY, Elementary Contractions of Gorenstein Threefolds (Math. Ann., Vol. 280, 1988, pp. 521-525). Zbl0616.14003MR89k:14070
  4. [E] L. EIN, Hilbert Scheme of Smooth Space Curves (Ann. scient. Éc. Norm. Sup., Vol. 19, 1986, pp. 469-478). Zbl0606.14003MR88c:14009
  5. [F] T. FUJITA, Semipositive line bundles (J. Fac. Sci. Univ. Tokyo, Vol. 30, 1983, pp. 353-378). Zbl0561.32012MR85f:32051
  6. [G] A. GROTHENDIECK, Fondements de la Géométrie Algébrique, Secrétariat Math., Paris, 1962. Zbl0239.14002
  7. [H] R. HARTSHORNE, Algebraic Geometry, Springer, 1977. Zbl0367.14001MR57 #3116
  8. [HP] W. HODGE and D. PEDOE, Methods of Algebraic Geometry, Cambridge Univ. Press, 1952. Zbl0048.14502
  9. [HR] H. HIRONAKA and H. ROSSI, On the Equivalence of Embeddings of Exceptional Complex Spaces (Math. Ann., Vol. 156, 1964, pp. 313-333). Zbl0136.20801MR30 #2011
  10. [Ma] H. MATSUMURA, Commutative Algebra, second edition, Benjamin/Cummings, 1980. Zbl0441.13001MR82i:13003
  11. [MM] Y. MIYAOKA and S. MORI, A Numerical Criterion for Uniruledness (Ann. of Math., Vol. 124, 1986, pp. 65-69). Zbl0606.14030MR87k:14046
  12. [M 1] S. MORI, Projective Manifolds with Ample Tangent Bundles (Ann. of Math., Vol. 110, 1979, pp. 593-606). Zbl0423.14006MR81j:14010
  13. [M 2] S. MORI, Threefolds whose Canonical Bundles are not Numerically Effective (Ann. of Math., Vol. 116, 1982, pp. 133-176). Zbl0557.14021MR84e:14032
  14. [Mu] D. MUMFORD, The Topology of Normal Singularities of an Algebraic Surface and a Criterion for Simplicity (Publ. Math. I.H.E.S., Vol. 9, 1961, pp. 5-22). Zbl0108.16801MR27 #3643
  15. [N] V. V. NIKULIN, Algebraic Threefolds and Diagram Method (Math. USSR Izv., to appear). Zbl0731.14024
  16. [S] E. SATO, On a Criterion of Uniruledness in Positive Characteristic, preprint, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.