Existence of flat tori in analytic manifolds of nonpositive curvature

V. Bangert; V. Schroeder

Annales scientifiques de l'École Normale Supérieure (1991)

  • Volume: 24, Issue: 5, page 605-634
  • ISSN: 0012-9593

How to cite

top

Bangert, V., and Schroeder, V.. "Existence of flat tori in analytic manifolds of nonpositive curvature." Annales scientifiques de l'École Normale Supérieure 24.5 (1991): 605-634. <http://eudml.org/doc/82307>.

@article{Bangert1991,
author = {Bangert, V., Schroeder, V.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {closed -flat; fundamental group; closed geodesic; geodesic flow; flag of singular subflats},
language = {eng},
number = {5},
pages = {605-634},
publisher = {Elsevier},
title = {Existence of flat tori in analytic manifolds of nonpositive curvature},
url = {http://eudml.org/doc/82307},
volume = {24},
year = {1991},
}

TY - JOUR
AU - Bangert, V.
AU - Schroeder, V.
TI - Existence of flat tori in analytic manifolds of nonpositive curvature
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1991
PB - Elsevier
VL - 24
IS - 5
SP - 605
EP - 634
LA - eng
KW - closed -flat; fundamental group; closed geodesic; geodesic flow; flag of singular subflats
UR - http://eudml.org/doc/82307
ER -

References

top
  1. [AS] M. ANDERSON and V. SCHROEDER, Existence of Flats in Manifolds of Nonpositive Curvature (Invent. Math., Vol. 85, 1986, pp. 303-315.). Zbl0615.53030MR87h:53049
  2. [B] S. V. BUYALO, Euclidean Planes in Three-Dimensional Manifolds of Nonpositive Curvature (Mat. Zametki, Vol. 43, 1988, pp. 103-114 : translated in Math. Notes, Vol. 43, 1988, pp. 60-66). Zbl0656.53038MR89d:53082
  3. [BBE] W. BALLMANN, M. BRIN and P. EBERLEIN, Structure of Manifolds of Nonpositive Curvature (Ann. Math., Vol. 122, 1985, pp. 171-203). Zbl0589.53047MR87c:58092a
  4. [BBS] W. BALLMANN, M. BRIN and R. SPATZIER, Structure of Manifolds of Nonpositive Curvature II, (Ann. Math., Vol. 122, 1985, pp. 205-235). Zbl0598.53046MR87c:58092b
  5. [BE] W. BALLMANN and P. EBERLEIN, Fundamental Groups of Manifolds of Nonpositive Curvature (J. Diff. Geom., Vol. 25, 1987, pp. 1-22). Zbl0701.53070MR88b:53047
  6. [BGS] W. BALLMANN, M. GROMOV and V. SCHROEDER, Manifolds of Nonpositive Curvature, Birkhäuser, Basel-Boston, 1985. Zbl0591.53001MR87h:53050
  7. [BM] E. BIERSTONE and P. D. MILMAN, Semianalytic and Subanalytic Sets (Inst. Hautes Études Sci. Publ. Math., Vol. 67, 1988, pp. 5-42). Zbl0674.32002MR89k:32011
  8. [BO] R. BISHOP and B. O'NEILL, Manifolds of Negative curvature (Trans. Am. Math. Soc., Vol. 145, 1969, pp. 1-49). Zbl0191.52002MR40 #4891
  9. [E1] P. EBERLEIN, Geodesic Flow in Certain Manifolds Without Conjugate Points (Trans. Am. Math. Soc., Vol. 167, 1972, pp. 151-170). Zbl0209.53304MR45 #4453
  10. [E2] P. EBERLEIN, Geodesic Rigidity in Compact Nonpositively Curved Manifolds (Trans. Amer. Math. Soc., Vol. 268, 1981, pp. 411-443). Zbl0526.53045MR83a:53039
  11. [EO] P. EBERLEIN and B. O'NEILL, Visibility Manifolds (Pac. J. Math., Vol. 46, 1973, pp. 45-109). Zbl0264.53026MR49 #1421
  12. [G1] M. GROMOV, Hyperbolic Manifolds, Groups and Actions, In : Riemann Surfaces and Related Topics : Proceedings of the 1978 Stony Brook Conference, I. KRA and B. MASKIT Eds. (Ann. Math. Stud., Vol. 97, Princeton Univ. Press, Princeton N.J. 1981). Zbl0467.53035MR82m:53035
  13. [G2] M. GROMOV, Hyperbolic Groups, In : Essays in Group Theory, S. M. GERSTEN Ed., Springer, 1987, pp. 75-263. Zbl0634.20015MR89e:20070
  14. [GW] D. GROMOLL and J. WOLF, Some Relations Between the Metric Structure and the Algebraic Structure of the Fundamental Group in Manifolds of Nonpositive Curvature (Bull. Am. Math. Soc., Vol. 77, 1971, pp. 545-552). Zbl0237.53037MR43 #6841
  15. [HPS] M. W. HIRSCH, C. C. PUGH and M. SHUB, Invariant Manifolds (Lect. Notes Math., No. 583, Springer, 1977). Zbl0355.58009MR58 #18595
  16. [LY] H.B. LAWSON and S. T. YAU, Compact Manifolds of Nonpositive Curvature (J. Diff. Geom., Vol. 7, 1972, pp. 211-228). Zbl0266.53035MR48 #12402
  17. [P] A. PREISSMANN, Quelques propriétés des espaces de Riemann (Comment. Math. Helv., Vol. 15, 1942-1943, pp. 175-216). Zbl0027.25903MR6,20g
  18. [S1] V. SCHROEDER, Existence of Immersed Tori in Manifolds of Nonpositive Curvature (J. Reine Angew. Math., Vol. 390, 1988, pp. 32-46). Zbl0641.53042MR89i:53032
  19. [S2] V. SCHROEDER, Structure of Flat Subspaces in Low Dimensional Manifolds of Non-Positive Curvature (Manuscripta Math., Vol. 64, 1989, pp. 77-105). Zbl0678.53035MR90c:53109
  20. [S3] V. SCHROEDER, A Cusp Closing Theorem (Proc. Amer. Math. Soc., Vol. 106, 1989, pp. 797-802). Zbl0678.53034MR89k:53045
  21. [S4] V. SCHROEDER, Analytic Manifolds of Nonpositive Curvature with Higher Rank Subspaces (Arch. Math., Vol. 56, 1991, pp. 81-85). Zbl0691.53032MR92a:53060
  22. [S5] V. SCHROEDER, Codimension One Flats in Manifolds of Nonpositive Curvature (Geom. Dedicata, Vol. 33, 1990, pp. 251-263). Zbl0698.53026MR91k:53049
  23. [T] M. TAMM, Subanalytic sets in the Calculus of Variation (Acta Math., Vol. 146, 1981, pp. 167-199). Zbl0478.58010MR82h:32012
  24. [Y] S. T. YAU, Problem Section. In : Seminar on Differential Geometry (Ann. Math. Stud., Vol. 102, Princeton Univ. Press, Princeton N.J. 1982). Zbl0479.53001MR83e:53029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.