Annihilators and associated varieties of unitary highest weight modules

Anthony Joseph

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 1, page 1-45
  • ISSN: 0012-9593

How to cite

top

Joseph, Anthony. "Annihilators and associated varieties of unitary highest weight modules." Annales scientifiques de l'École Normale Supérieure 25.1 (1992): 1-45. <http://eudml.org/doc/82311>.

@article{Joseph1992,
author = {Joseph, Anthony},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {simple Lie algebra; representations; highest weight modules; enveloping algebras; prime ideals},
language = {eng},
number = {1},
pages = {1-45},
publisher = {Elsevier},
title = {Annihilators and associated varieties of unitary highest weight modules},
url = {http://eudml.org/doc/82311},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Joseph, Anthony
TI - Annihilators and associated varieties of unitary highest weight modules
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 1
SP - 1
EP - 45
LA - eng
KW - simple Lie algebra; representations; highest weight modules; enveloping algebras; prime ideals
UR - http://eudml.org/doc/82311
ER -

References

top
  1. [1] D. BARBASCH, The Unitary Dual for Complex Classical Lie Groups (Inv. Math., Vol. 96, 1989, pp. 103-176). Zbl0692.22006MR90c:22044
  2. [2] D. BARBASCH and D. A. VOGAN, Primitive Ideals and Orbital Integrals in Complex Classical Groups (Math. Ann., Vol. 259, 1982, pp. 153-199). Zbl0489.22010MR83m:22026
  3. [3] W. BORHO and J.-L. BRYLINSKI, Differential Operators on Homogeneous Spaces III (Invent. Math., Vol. 80, 1985, pp. 1-68). Zbl0577.22014MR87i:22045
  4. [4] W. BORHO and H. KRAFT, Über die Gelfand-Kirillov Dimension (Math. Ann., Vol. 220, 1976, pp. 1-24). Zbl0306.17005MR54 #367
  5. [5] N. BOURBAKI, Groupes et Algèbres de Lie, Chaps. IV-VI, Act. Sci. Ind., 1337, Hermann, Paris, 1968. MR39 #1590
  6. [6] M. G. DAVIDSON, T. J. ENRIGHT and R. J. STANKE, Differential Operators and Highest Weight Representations, preprint, 1990. Zbl0759.22015
  7. [7] J. DIXMIER, Algèbres enveloppantes (Cahiers scientifiques, No. 37, Gauthier-Villars, Paris, 1974). Zbl0308.17007MR58 #16803a
  8. [8] T. J. ENRIGHT, Analogues of Kostant's u Cohomology Formulas for Unitary Highest Weight Modules (J. reine angew. Math., Vol. 392, 1988, pp. 27-36). Zbl0651.17003MR89m:22022
  9. [9] T. J. ENRIGHT, R. HOWE and N. R. WALLACH, A Classification of Unitary Highest Weight Modules, in Representation Theory of Reductive Groups, P. C. TROMBI Ed., Boston, 1983, pp. 97-143. Zbl0535.22012MR86c:22028
  10. [10] T. J. ENRIGHT and A. JOSEPH, An Intrinsic Analysis of Unitarizable Highest Weight Modules (Math. Ann., Vol. 288, 1990, pp. 571-594). Zbl0725.17009MR91m:17005
  11. [11] A. FREUDENTHAL, Zur eben Oktavengeometrie (Indag. Math., Vol. 15, 1953, pp. 195-200). Zbl0053.01503
  12. [12] M. HARRIS and H. P. JAKOBSEN, Singular Holomorphic Representations and Singular Modular Forms (Math. Ann., Vol. 259, 1982, pp. 227-244). Zbl0466.32017MR84b:22023
  13. [13] H. P. JAKOBSEN, On Singular Holomorphic Representations (Invent. Math., Vol. 62, 1980, pp. 67-78). Zbl0466.22016MR82e:22025
  14. [14] H. P. JAKOBSEN, Hermitian Symmetric Spaces and Their Unitary Highest Weight Modules (J. Funct. Anal., Vol. 52, 1983, pp. 385-412). Zbl0517.22014MR85a:17004
  15. [15] H. P. JAKOBSEN and M. VERGNE, Restrictions and Expansions of Holomorphic Representations (J. Funct. Anal., Vol. 34, 1979, pp. 29-53). Zbl0433.22011MR80m:22020
  16. [16] J. C. JANTZEN, Einhüllenden Algebren halbeinfacher Lie-Algebren (Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1983). Zbl0541.17001
  17. [17] A. JOSEPH, The Minimal Orbit in a Simple Lie Algebra and Its Associated Maximal Ideal (Ann. Ec. Norm. Sup., Vol. 9, 1976, pp. 1-30). Zbl0346.17008MR53 #8168
  18. [18] A. JOSEPH, A Preparation Theorem for the Prime Spectrum of a Semisimple Lie Algebra (J. Algebra, Vol. 48, 1977, pp. 241-289). Zbl0405.17007MR56 #12082
  19. [19] A. JOSEPH, Gelfand-Kirillov Dimension for the Annihilators of Simple Quotients of Verma Modules (J. Lond. Math. Soc., Vol. 18, 1978, pp. 50-60). Zbl0401.17007MR58 #22202
  20. [20] A. JOSEPH, Kostant's Problem, Goldie Rank and the Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). Zbl0446.17006MR82f:17008
  21. [21] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra I-III (J. Algebra, Vol. 65, 1980, pp. 269-283 and 284-306, Vol. 73, 1981, pp. 295-326). Zbl0441.17004
  22. [22] A. JOSEPH, A Characteristic Variety for the Primitive Spectrum of a Semisimple Lie Algebra, in Non-Commutative Harmonic Analysis (Lectures Notes, No. 587, Berlin, 1977, pp. 102-118). Zbl0374.17004MR56 #8645
  23. [23] A. JOSEPH, On the Variety of a Highest Weight Module (J. Algebra, Vol. 88, 1984, pp. 238-278). Zbl0539.17006MR85j:17014
  24. [24] A. JOSEPH, A Surjectivity Theorem for rigid Highest Weight Modules (Invent. Math., Vol. 92, 1988, pp. 567-596). Zbl0657.17004MR89d:17013
  25. [25] T. LEVASSEUR, S. P. SMITH and J. T. STAFFORD, The Minimal Nilpotent Orbit, the Joseph Ideal and Differential Operators (J. Algebra, Vol. 116, 1988, pp. 480-501). Zbl0656.17009MR89k:17028
  26. [26] T. LEVASSEUR and J. T. STAFFORD, Rings of Differential Operators on Classical Rings of Invariants (Mem. Am. Math. Soc., Vol. 412, 1989). Zbl0691.16019MR90i:17018
  27. [27] J. C. MCCONNELL and J. C. ROBSON, Non-Commutative Noetherian Rings, Wiley-Interscience, New York, 1987. Zbl0644.16008MR89j:16023
  28. [28] W. M. MCGOVERN, Quantization of Nilpotent Orbit Covers in Complex Classical Groups, preprint, 1989. 
  29. [29] D. A. VOGAN, The Orbit Method and Primitive Ideals for Semisimple Lie Algebras, (Canad. Math. Soc. Conference Proceedings, Vol. 5, 1986, pp. 281-316). Zbl0585.17008MR87k:17015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.