An intrinsic classification of the unitarizable highest weight modules as well as their associated varieties

Hans Plesner Jakobsen

Compositio Mathematica (1996)

  • Volume: 101, Issue: 3, page 313-352
  • ISSN: 0010-437X

How to cite

top

Jakobsen, Hans Plesner. "An intrinsic classification of the unitarizable highest weight modules as well as their associated varieties." Compositio Mathematica 101.3 (1996): 313-352. <http://eudml.org/doc/90445>.

@article{Jakobsen1996,
author = {Jakobsen, Hans Plesner},
journal = {Compositio Mathematica},
keywords = {unitarizability; Bernstein-Gelfand-Gelfand theorem; hermitian symmetric space; holomorphic automorphisms; unitarizable highest weight representations; complexified Lie algebra; maximal torus; Verma module; Shapovalov form; associated varieties},
language = {eng},
number = {3},
pages = {313-352},
publisher = {Kluwer Academic Publishers},
title = {An intrinsic classification of the unitarizable highest weight modules as well as their associated varieties},
url = {http://eudml.org/doc/90445},
volume = {101},
year = {1996},
}

TY - JOUR
AU - Jakobsen, Hans Plesner
TI - An intrinsic classification of the unitarizable highest weight modules as well as their associated varieties
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 101
IS - 3
SP - 313
EP - 352
LA - eng
KW - unitarizability; Bernstein-Gelfand-Gelfand theorem; hermitian symmetric space; holomorphic automorphisms; unitarizable highest weight representations; complexified Lie algebra; maximal torus; Verma module; Shapovalov form; associated varieties
UR - http://eudml.org/doc/90445
ER -

References

top
  1. 1 Bernstein, I.N., Gelfand, I.M. and Gelfand, S.I.: Differential operators on the base affine space and a study of g-modules, in 'Lie Groups And Their Representations', Adam Hilger, London, 1975. Zbl0338.58019
  2. 2 Boe, B.: Homomorphisms between generalized Verma modules, Dissertation, Yale University, 1982. Zbl0568.17004
  3. 3 Boe, B. and Collingwood, D.: Intertwining operators between holomorphically induced modules, Pac. J. Math.124 (1986), 73-84. Zbl0632.22011MR850667
  4. 4 Boe, B. and Collingwood, D.: A multiplicity one theorem for holomorphically induced representations, Math. Z.192 (1986), 265-282. Zbl0598.22009MR840829
  5. 5 Davidson, M.G. and Stanke, R.J.: Gradient-type differential operators and unitary highest weight representations of SU(p, q), J. Funct. Anal.81 (1988), 100-125. Zbl0678.22004MR967893
  6. 6 Davidson, M.G., Enright, T.J. and Stanke, R.J.: Differential operators and highest weight representations, Memoirs of the A.M.S. #455 (1991). Zbl0759.22015MR1081660
  7. 7 Deodhar, V.V.: Some characterizations of the Bruhat ordering on a Coxeter group and characterization of the relative Möbius function, Invent. Math.39 (1977), 187-198. Zbl0333.20041MR435249
  8. 8 Enright, T.J., Howe, R. and Wallach, N.: A classification of unitary highest weight modules, in Representation Theory Of Reductive Groups, P.C. Trombi (eds.) (1983), 97-143. Zbl0535.22012MR733809
  9. 9 Enright, T.J. and Joseph, A.: An intrinsic analysis of unitarizable highest weight modules, Preprint 1990. Zbl0725.17009MR1081264
  10. 10 Enright, T.J. and Parthasarathy, R.: A proof of a conjecture of Kashiwara and Vergne, in Non-commutative Harmonic Analysis, Marseille-Luminy1980, Springer Lecture Notes in Mathematics, 880 (1981), 74-90. Zbl0492.22012MR644829
  11. 11 Harish- Chandra, Representations of semi-simple Lie groups IV, V, VI., Amer. Jour. Math.77 (1955), 743-777; 78 (1956), 1-41; 78 (1956), 564-628. Zbl0072.01702
  12. 12 Harris, M. and Jakobsen, H.P.: Covariant differential operators, in Group Theoretical Methods In Physics, Istanbul1982, Springer Lecture Notes in Physics180, 1983. Zbl0529.22015MR724940
  13. 13 Jakobsen, H.P. and Vergne, M.: Wave and Dirac operators and representations of the conformal group, J. Funct. Anal.24 (1977), 52-106. Zbl0361.22012MR439995
  14. 14 Jakobsen, H.P. and Vergne, M.: Restrictions and expansions of holomorphic representations, J. Funct. Anal.34 (1979), 29-53. Zbl0433.22011MR551108
  15. 15 Jakobsen, H.P.: On singular holomorphic representations, Invent. Math.62 (1980), 67-78. Zbl0466.22016MR595582
  16. 16 Jakobsen, H.P.: The last possible place of unitarity for certain highest weight modules, Math. Ann.256 (1981), 439-447. Zbl0478.22007MR628225
  17. 17 Jakobsen, H.P.: Hermitian symmetric spaces and their unitary highest weight modules, J. Funct. Anal.52 (1983), 385-412. Zbl0517.22014MR712588
  18. 18 Jakobsen, H.P.: Basic covariant differential operators on hermitian symmetric spaces, Ann. scient. Èc. Norm. Sup.18 (1985), 421-436. Zbl0619.32022MR826101
  19. 19 James, G.D.: 'The Representation Theory of the Symmetric Groups', Springer Lecture Notes in Math. #682, Springer Verlag, Berlin-Heidelberg- New York1978. Zbl0393.20009
  20. 20 Joseph, A.: Annihilators and associated varieties of unitary highest weight modules, Preprint 1990, To appear in Ann. scient. Èc. Norm. Sup. Zbl0752.17007MR1152612
  21. 21 Kashiwara, M. and Vergne, M.: On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math.44 (1978), 1-47. Zbl0375.22009MR463359
  22. 22 Knapp, A. and Okamoto, K.: Limits of holomorphic discrete series, J. Funct. Anal.9 (1972), 375-409. Zbl0226.22010MR299726
  23. 23 Mack, G.: All unitary ray representations of the conformal group SU(2,2) with positive energy, Comm. Math. Phys.55 (1977), 1-28. Zbl0352.22012MR447493
  24. 24 Parthasarathy, K.R.: Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci.89 (1980), 1-24. Zbl0434.22011MR573381
  25. 25 Rossi, H. and Vergne, M.: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math.136 (1976), 1-59. Zbl0356.32020MR480883
  26. 26 Rühl, W.: Distributions on Minkowski space and their connection with analytic representations of the conformal group, Comm. Math. Phys.27 (1972), 53-86. See also Ibid. 30 (1973), 287-302 and 34 (1973), 149-166. Zbl0239.46035MR309464
  27. 27 Schmid, W.: Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math.9 (1969), 61-80. Zbl0219.32013MR259164
  28. 28 Wallach, N.: Analytic continuation of the holomorphic discrete series II, Trans. Amer. Math, Soc. 260 (1980), 563-573. Zbl0439.22017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.