Convergence of riemannian manifolds with integral bounds on curvature. II

Deane Yang

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 2, page 179-199
  • ISSN: 0012-9593

How to cite

top

Yang, Deane. "Convergence of riemannian manifolds with integral bounds on curvature. II." Annales scientifiques de l'École Normale Supérieure 25.2 (1992): 179-199. <http://eudml.org/doc/82316>.

@article{Yang1992,
author = {Yang, Deane},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local Ricci flow; harmonic coordinates; integral curvature bounds; elliptic estimates; Moser iteration},
language = {eng},
number = {2},
pages = {179-199},
publisher = {Elsevier},
title = {Convergence of riemannian manifolds with integral bounds on curvature. II},
url = {http://eudml.org/doc/82316},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Yang, Deane
TI - Convergence of riemannian manifolds with integral bounds on curvature. II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 2
SP - 179
EP - 199
LA - eng
KW - local Ricci flow; harmonic coordinates; integral curvature bounds; elliptic estimates; Moser iteration
UR - http://eudml.org/doc/82316
ER -

References

top
  1. [1] M. T. ANDERSON, Convergence and Rigidity of Manifolds under Ricci Curvature Bounds (Invent. Math., Vol. 102, 1990, pp. 429-445). Zbl0711.53038MR92c:53024
  2. [2] M. T. ANDERSON and J. CHEEGER, Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/²-Norm of Curvature Bounded, preprint, 1990. 
  3. [3] I. CHAVEL, Eigenvalues in Riemannian Geometry, Academic Press, 1984. Zbl0551.53001MR86g:58140
  4. [4] L. ZHIYONG GAO, Convergence of Riemannian Manifolds, Ricci Pinching, and Ln/²-Curvature Pinching, (J. Diff. Geometry, Vol. 32, 1990, pp. 349-382). Zbl0752.53022
  5. [5] L. ZHIYONG GAO, Ln/2-Curvature Pinching, (J. Diff. Geometry, Vol. 32, 1990, pp. 713-774). Zbl0721.53039
  6. [6] D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977. Zbl0361.35003MR57 #13109
  7. [7] J. JOST, Harmonic Maps between Riemannian Manifolds, Australian National University, 1984. 
  8. [8] J. JOST and H. KARCHER, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen (Manuscripta Math., Vol. 40, 1982, pp. 27-77). Zbl0502.53036MR84e:58023
  9. [9] M. MIN-OO and E. RUH, L²-Curvature Pinching, (Comment. Math. Helvet., Vol. 65, 1990, pp. 36-51). Zbl0704.53031MR91d:53060
  10. [10] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
  11. [11] D. YANG, Convergence of Riemannian Manifolds with Integral Bounds on Curvature I (Ann. scient. Éc. Norm. Sup., Vol. 25, 1992, pp. 77-105). Zbl0748.53025MR93a:53037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.