Convergence of riemannian manifolds with integral bounds on curvature. I

Deane Yang

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 1, page 77-105
  • ISSN: 0012-9593

How to cite

top

Yang, Deane. "Convergence of riemannian manifolds with integral bounds on curvature. I." Annales scientifiques de l'École Normale Supérieure 25.1 (1992): 77-105. <http://eudml.org/doc/82313>.

@article{Yang1992,
author = {Yang, Deane},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local Ricci flow; Gromov convergence theorem; integral curvature bounds},
language = {eng},
number = {1},
pages = {77-105},
publisher = {Elsevier},
title = {Convergence of riemannian manifolds with integral bounds on curvature. I},
url = {http://eudml.org/doc/82313},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Yang, Deane
TI - Convergence of riemannian manifolds with integral bounds on curvature. I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 1
SP - 77
EP - 105
LA - eng
KW - local Ricci flow; Gromov convergence theorem; integral curvature bounds
UR - http://eudml.org/doc/82313
ER -

References

top
  1. [1] M. T. ANDERSON, Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds (J. Am. Math. Soc., 1989, pp. 455-490). Zbl0694.53045MR90g:53052
  2. [2] M. T. ANDERSON, Convergence and Rigidity of Manifolds Under Ricci Curvature Bounds (Invent. Math., Vol. 102, 1990, pp. 429-445). Zbl0711.53038MR92c:53024
  3. [3] M. T. ANDERSON and J. CHEEGER, Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-Norm of Curvature Bounded, preprint, 1990. 
  4. [4] J. BEMELMANS, MIN-OO and E. A. RUH, Smoothing Riemannian Metrics (Math. Zeitschr., Vol. 188, 1984, pp. 69-74). Zbl0536.53044MR85m:58184
  5. [5] P. BUSER and H. KARCHER, Gromov's Almost Flat Manifolds (Astérisque, Vol. 81, 1981). Zbl0459.53031MR83m:53070
  6. [6] I. CHAVEL, Eigenvalues in Riemannian Geometry, Academic Press, 1984. Zbl0551.53001MR86g:58140
  7. [7] J. CHEEGER, M. GROMOV and M. TAYLOR, Finite Propagation Speed, Kernel Estimates for Functions of the Laplace Operator and the Geometry of Complete Riemannian Manifolds (J. Diff. Geometry, Vol. 17, 1982, p. 15-53). Zbl0493.53035MR84b:58109
  8. [8] J. CHEEGER, Finiteness Theorems for Riemannian Manifolds (Am. J. Math., Vol. 92, 1970, pp. 61-74). Zbl0194.52902MR41 #7697
  9. [9] C. B. CROKE, Some Isoperimetric Inequalities and Eigenvalue Estimates (Ann. scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 419-435). Zbl0465.53032MR83d:58068
  10. [10] D. M. DETURCK, Deforming Metrics in the Direction of Their Ricci Tensors (J. Diff. Geometry, Vol. 18, 1983, pp. 157-162). Zbl0517.53044MR85j:53050
  11. [11] S. GALLOT, Isoperimetric Inequalities Based on Integral Norms of Ricci Curvature (Astérisque, Vol. 157-158, 1988, pp. 191-216). Zbl0665.53041MR90a:58179
  12. [12] L. ZHIYONG GAO, Convergence of Riemannian Manifolds, Ricci Pinching, and Ln/2-Curvature Pinching, (J. Diff. Geometry, Vol. 32, 1990, pp. 349-382). Zbl0752.53022
  13. [13] L. ZHIYONG GAO, Einstein Manifolds (J. Diff. Geometry, Vol. 32, 1990, pp. 155-183). Zbl0719.53024
  14. [14] L. ZHIYONG GAO, Ln/2-Curvature Pinching (J. Diff. Geometry, Vol. 32, 1990, pp. 713-774). Zbl0721.53039
  15. [15] R. E. GREENE and HUNG-HSI WU, Lipschitz Convergence of Riemannian Manifolds, (Pac. J. Math., Vol. 131, 1988, pp. 119-141). Zbl0646.53038MR89g:53063
  16. [16] M. GROMOV, J. LAFONTAINE and P. PANSU, Structures métriques pour les variétés riemanniennes, Cedic, 1981. Zbl0509.53034MR85e:53051
  17. [17] R. S. HAMILTON, Three-Manifolds with Positive Ricci Curvature, (J. Diff. Geometry, Vol. 17, 1982, pp. 255-306). Zbl0504.53034MR84a:53050
  18. [18] S. KLAINERMAN, Global Existence for Nonlinear Wave Equations (Commun. Pure Appl. Math., Vol. 43, 1980, pp. 43-101). Zbl0405.35056MR81b:35050
  19. [19] S. PETERS, Convergence of Riemannian Manifolds (Compositio Mathematica, Vol. 62, 1987, pp. 3-16). Zbl0618.53036MR88i:53076
  20. [20] WAN-XIONG SHI, Deforming the Metric on Complete Riemannian Manifolds, preprint, 1987. 
  21. [21] M. E. TAYLOR, Pseudodifferential Operators, Princeton University Press, 1981. Zbl0453.47026MR82i:35172
  22. [22] D. YANG, Convergence of Riemannian Manifolds with Integral Bounds on Curvature. II [Ann. scient. Éc. Norm. Sup. (to appear)]. Zbl0781.53035
  23. [23] D. YANG, Lp Pinching and Compactness Theorems for Compact Riemannian Manifolds, preprint. 
  24. [24] D. YANG, Riemannian Manifolds with Small Integral Norm of Curvature, preprint, 1989. 
  25. [25] D. YANG, Existence and Regularity of Energy-Minimizing Riemannian Metrics [Internat. Math. Research Notices (Duke Math. J.), 1991]. Zbl0732.53036MR92f:58039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.