On the real cohomology of arithmetic groups and the rank conjecture for number fields
Annales scientifiques de l'École Normale Supérieure (1992)
- Volume: 25, Issue: 3, page 287-306
- ISSN: 0012-9593
Access Full Article
topHow to cite
topYang, Jun. "On the real cohomology of arithmetic groups and the rank conjecture for number fields." Annales scientifiques de l'École Normale Supérieure 25.3 (1992): 287-306. <http://eudml.org/doc/82320>.
@article{Yang1992,
author = {Yang, Jun},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {K-groups; semisimple algebraic group; real cohomology; rank filtration; rank conjecture},
language = {eng},
number = {3},
pages = {287-306},
publisher = {Elsevier},
title = {On the real cohomology of arithmetic groups and the rank conjecture for number fields},
url = {http://eudml.org/doc/82320},
volume = {25},
year = {1992},
}
TY - JOUR
AU - Yang, Jun
TI - On the real cohomology of arithmetic groups and the rank conjecture for number fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 3
SP - 287
EP - 306
LA - eng
KW - K-groups; semisimple algebraic group; real cohomology; rank filtration; rank conjecture
UR - http://eudml.org/doc/82320
ER -
References
top- [Bei] A. A. BEILINSON, Higher Regulators and Values of L-Functions, English translations, (J. Soviet Math., Vol. 30, No. 2, 1985, pp. 2036-2070). Zbl0588.14013
- [B1] S. BLOCH, Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves (Lect. Notes, U.C. Irvine, 1978).
- [B1] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts (Ann. Math., Vol. 57, 1953, pp. 115-207). Zbl0052.40001MR14,490e
- [B2] A. BOREL, Introduction aux groupes arithmétiques, Publ. Inst. Math., Univ. Strasbourg, No. 15 (Actualites Sci. Indust., No. 1341, Hermann, Paris, 1969). Zbl0186.33202MR39 #5577
- [B3] A. BOREL, Stable Real Cohomology of Arithmetic Groups (Ann. Sci. Ec. Norm. Sup., 4, T. 7, 1974, pp. 235-272). Zbl0316.57026MR52 #8338
- [B4] A. BOREL, Cohomologie de SLn et valeurs de fonctions zeta (Ann. Scuola Normale Superiore, Vol. 7, 1974, pp. 613-636). Zbl0382.57027
- [B5] A. BOREL, Stable Real Cohomology of Arithmetic Groups II (Prog. Math. Boston, Vol. 14, 1981, pp. 21-55). Zbl0483.57026MR83h:22023
- [BS] A. BOREL and J.-P. SERRE, Corners and Arithmetic Groups (Comment. Math. Helv., Vol. 48, 1974, pp. 244-297). Zbl0274.22011MR52 #8337
- [BT] A. BOREL and J. TITS, Groupes réductifs, (Publ. Math. I.H.E.S., Vol. 27, 1965, pp. 55-150). Zbl0145.17402MR34 #7527
- [Gi] H. GILLET, Riemann-Roch Theorems for Higher Algebraic K-Theory (Adv. Math., Vol. 40, 1981, pp. 203-289). Zbl0478.14010MR83m:14013
- [VE] W. T. VAN EST, On the Algebraic Cohomology Concepts in Lie Groups II (Proc. Konink. Nederl. Akad. v. Wet., Series A, Vol. 58, 1955, pp. 286-294). Zbl0067.26202MR17,61b
- [Ga] H. GARLAND, A Finiteness Theorem for K2 of a Number Field (Ann. Math., vol. 94, No. 2, 1971, pp. 534-548). Zbl0247.12103MR45 #6785
- [Go] A. B. GONCHAROV, The Classical Three Logarithm, Algebraic K-Theory of Fields and Dedekind Zeta Functions (Bull. AMS., vol. 24, No. 1, 1991, pp. 155-162). Zbl0731.19006MR91g:11137
- [H] H. HILLER, λ-Rings and Algebraic K-Theory (J. Pure Appl. Algebra, Vol. 20, No. 3, 1981, pp. 241-266. Zbl0471.18007MR82e:18016
- [HM] R. HAIN and R. MACPHERSON, Higher Logarithms, III (J. Math., Vol. 34, No. 2, 1990, pp. 392-475). Zbl0737.14014MR92c:14016
- [L] J. L. LODAY, K-théorie algébrique et représentations de groupes (Ann. Sci. Ec. Norm. Sup., T. 9, 1976, pp. 41-377). Zbl0362.18014MR56 #5686
- [MM] J. MILNOR and J. MOORE, On the Structure of Hopf Algebras (Ann. Math., Vol. 81, No. 2, 1965, pp. 211-264). Zbl0163.28202MR30 #4259
- [Rh] G. DE RHAM, Differentiable Manifolds, English Translation, Springer-Verlag, 1984. Zbl0534.58003MR85m:58005
- [W] A. WEIL, Adeles and Algebraic Groups, Notes by M. DEMAZURE and T. ONO, The Institute for Advanced Study, Princeton, 1961.
- [Y] J. YANG, Algebraic k-groups of Number Fields and the Hain-MacPherson Trilogarithm, Thesis, 1991.
- [Z] D. ZAGIER, The Bloch-Wigner-Ramakrishnan Polylogarithm Function (Math. Ann., Vol. 286, No. 1-3, 1990, pp. 613-624). Zbl0698.33001MR90k:11153
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.