On the real cohomology of arithmetic groups and the rank conjecture for number fields

Jun Yang

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 3, page 287-306
  • ISSN: 0012-9593

How to cite

top

Yang, Jun. "On the real cohomology of arithmetic groups and the rank conjecture for number fields." Annales scientifiques de l'École Normale Supérieure 25.3 (1992): 287-306. <http://eudml.org/doc/82320>.

@article{Yang1992,
author = {Yang, Jun},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {K-groups; semisimple algebraic group; real cohomology; rank filtration; rank conjecture},
language = {eng},
number = {3},
pages = {287-306},
publisher = {Elsevier},
title = {On the real cohomology of arithmetic groups and the rank conjecture for number fields},
url = {http://eudml.org/doc/82320},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Yang, Jun
TI - On the real cohomology of arithmetic groups and the rank conjecture for number fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 3
SP - 287
EP - 306
LA - eng
KW - K-groups; semisimple algebraic group; real cohomology; rank filtration; rank conjecture
UR - http://eudml.org/doc/82320
ER -

References

top
  1. [Bei] A. A. BEILINSON, Higher Regulators and Values of L-Functions, English translations, (J. Soviet Math., Vol. 30, No. 2, 1985, pp. 2036-2070). Zbl0588.14013
  2. [B1] S. BLOCH, Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves (Lect. Notes, U.C. Irvine, 1978). 
  3. [B1] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts (Ann. Math., Vol. 57, 1953, pp. 115-207). Zbl0052.40001MR14,490e
  4. [B2] A. BOREL, Introduction aux groupes arithmétiques, Publ. Inst. Math., Univ. Strasbourg, No. 15 (Actualites Sci. Indust., No. 1341, Hermann, Paris, 1969). Zbl0186.33202MR39 #5577
  5. [B3] A. BOREL, Stable Real Cohomology of Arithmetic Groups (Ann. Sci. Ec. Norm. Sup., 4, T. 7, 1974, pp. 235-272). Zbl0316.57026MR52 #8338
  6. [B4] A. BOREL, Cohomologie de SLn et valeurs de fonctions zeta (Ann. Scuola Normale Superiore, Vol. 7, 1974, pp. 613-636). Zbl0382.57027
  7. [B5] A. BOREL, Stable Real Cohomology of Arithmetic Groups II (Prog. Math. Boston, Vol. 14, 1981, pp. 21-55). Zbl0483.57026MR83h:22023
  8. [BS] A. BOREL and J.-P. SERRE, Corners and Arithmetic Groups (Comment. Math. Helv., Vol. 48, 1974, pp. 244-297). Zbl0274.22011MR52 #8337
  9. [BT] A. BOREL and J. TITS, Groupes réductifs, (Publ. Math. I.H.E.S., Vol. 27, 1965, pp. 55-150). Zbl0145.17402MR34 #7527
  10. [Gi] H. GILLET, Riemann-Roch Theorems for Higher Algebraic K-Theory (Adv. Math., Vol. 40, 1981, pp. 203-289). Zbl0478.14010MR83m:14013
  11. [VE] W. T. VAN EST, On the Algebraic Cohomology Concepts in Lie Groups II (Proc. Konink. Nederl. Akad. v. Wet., Series A, Vol. 58, 1955, pp. 286-294). Zbl0067.26202MR17,61b
  12. [Ga] H. GARLAND, A Finiteness Theorem for K2 of a Number Field (Ann. Math., vol. 94, No. 2, 1971, pp. 534-548). Zbl0247.12103MR45 #6785
  13. [Go] A. B. GONCHAROV, The Classical Three Logarithm, Algebraic K-Theory of Fields and Dedekind Zeta Functions (Bull. AMS., vol. 24, No. 1, 1991, pp. 155-162). Zbl0731.19006MR91g:11137
  14. [H] H. HILLER, λ-Rings and Algebraic K-Theory (J. Pure Appl. Algebra, Vol. 20, No. 3, 1981, pp. 241-266. Zbl0471.18007MR82e:18016
  15. [HM] R. HAIN and R. MACPHERSON, Higher Logarithms, III (J. Math., Vol. 34, No. 2, 1990, pp. 392-475). Zbl0737.14014MR92c:14016
  16. [L] J. L. LODAY, K-théorie algébrique et représentations de groupes (Ann. Sci. Ec. Norm. Sup., T. 9, 1976, pp. 41-377). Zbl0362.18014MR56 #5686
  17. [MM] J. MILNOR and J. MOORE, On the Structure of Hopf Algebras (Ann. Math., Vol. 81, No. 2, 1965, pp. 211-264). Zbl0163.28202MR30 #4259
  18. [Rh] G. DE RHAM, Differentiable Manifolds, English Translation, Springer-Verlag, 1984. Zbl0534.58003MR85m:58005
  19. [W] A. WEIL, Adeles and Algebraic Groups, Notes by M. DEMAZURE and T. ONO, The Institute for Advanced Study, Princeton, 1961. 
  20. [Y] J. YANG, Algebraic k-groups of Number Fields and the Hain-MacPherson Trilogarithm, Thesis, 1991. 
  21. [Z] D. ZAGIER, The Bloch-Wigner-Ramakrishnan Polylogarithm Function (Math. Ann., Vol. 286, No. 1-3, 1990, pp. 613-624). Zbl0698.33001MR90k:11153

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.