Morita equivalence and symplectic realizations of Poisson manifolds

Ping Xu

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 3, page 307-333
  • ISSN: 0012-9593

How to cite

top

Xu, Ping. "Morita equivalence and symplectic realizations of Poisson manifolds." Annales scientifiques de l'École Normale Supérieure 25.3 (1992): 307-333. <http://eudml.org/doc/82321>.

@article{Xu1992,
author = {Xu, Ping},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic structures; Lie groupoids; groupoid equivalence; Poisson structures; symplectic groupoids; Morita equivalent},
language = {eng},
number = {3},
pages = {307-333},
publisher = {Elsevier},
title = {Morita equivalence and symplectic realizations of Poisson manifolds},
url = {http://eudml.org/doc/82321},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Xu, Ping
TI - Morita equivalence and symplectic realizations of Poisson manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 3
SP - 307
EP - 333
LA - eng
KW - symplectic structures; Lie groupoids; groupoid equivalence; Poisson structures; symplectic groupoids; Morita equivalent
UR - http://eudml.org/doc/82321
ER -

References

top
  1. [CDW] A. COSTE, P. DAZORD and A. WEINSTEIN, Groupoïdes Symplectiques (Publications du Département de Mathématiques, Université Claude-Bernard, Lyon-I, 1987). Zbl0668.58017MR90g:58033
  2. [Co] F. COMBES, Crossed Products and Morita Equivalence (Proc. London Math. Soc., 3, Vol. 49, 1984, pp. 289-306). Zbl0521.46058MR86c:46081
  3. [CMW] R. E. CURTO, P. S. MUHLY and D. P. WILLIAMS, Cross Products of Strongly Morita Equivalent C*-Algebras (Proc. Am. Math. Soc., Vol. 90, No. 4, 1984, pp. 528-530). Zbl0508.22012MR85i:46083
  4. [D1] P. DAZORD, Groupoïdes Symplectiques et Troisième Théorème de Lie "Non Linéaire" (Lect. Notes Math., C. ALBERT Ed., No. 1416, 1990. Zbl0702.58023MR91i:58169
  5. [D2] P. DAZORD, Réalisations Isotropes de Libermann (Publ. Dept. Math. Lyon, 1989). 
  6. [KaO] M. V. KARASEV, Quantization of Nonlinear Lie-Poisson Brackets in Quasiclassical Approximation, Preprint ITF-85-72R [Inst. Theoret. Phys. Acad. Sci. Ukrainian S.S.R., Kiev, 1985 (in Russian)]. 
  7. [Ka] M. V. KARASEV, Analogues of Objects of the Theory of Lie Groups for Nonlinear Poisson Brackets (Math. U.S.S.R. Izvestiya, Vol. 28, 1987, pp. 497-527). Zbl0624.58007
  8. [KaMa] M. V. KARASEV and V. P. MASLOV, Global Asymptotic Operators of the Regular Representation (Soviet Math. Dokl., Vol. 23, 1981, pp. 228-232). Zbl0476.58025MR82e:81020
  9. [KM] P. S. KRISHNAPRASAD and J. MARSDEN, Hamiltonian Structures and Stability for Rigid Bodies with Flexible Attachments (I. Arch. Rat. Mech. Anal., Vol. 98, No. 1, 1987, pp. 71-93). Zbl0624.58010MR87m:58084
  10. [Ku] N. H. KUIPER, The Homotopy Type of the Unitary Group of Hilbert Space (Topology, Vol. 3, 1965, pp. 19-30). Zbl0129.38901MR31 #4034
  11. [L] A. LICHNEROWICZ, Les Variétés de Poisson et Leurs Algèbres de Lie Associées (J. Diff. Geom., Vol. 12, 1977, pp. 253-300). Zbl0405.53024MR58 #18565
  12. [LW] J.-H. LU and A. WEINSTEIN, Groupoïdes Symplectiques Doubles des Groupes de Lie-Poisson (C. R. Acad. Sci. Paris, T. 309, Série I, 1989, pp. 951-954). Zbl0701.58025MR91i:58045
  13. [M1] K. MACKENZIE, Lie Groupoids and Lie Algebroids in Differential Geometry (L.M.S. Lect. Notes Series, No. 124, Cambridge Univ. Press, 1987). Zbl0683.53029MR89g:58225
  14. [MW] J. MARSDEN and A. WEINSTEIN, Reduction of Symplectic Manifolds with Symmetry (Rep. Math. Phys., Vol. 5, 1974, pp. 121-129). Zbl0327.58005MR53 #6633
  15. [MiW] K. MIKAMI and A. WEINSTEIN, Moments and Reduction for Symplectic Groupoid Ations (Publ. R.I.M.S. Kyoto Univ., Vol. 24, 1998, pp. 121-140). Zbl0659.58016MR90c:58060
  16. [Pe] C. K. PEDERSON, C*-Algebras and their Automorphism Groups, Academic Press, London, New York, 1979. Zbl0416.46043
  17. [Ren] J. RENAULT, A Groupoid Approach to C*-Algebras (Lect. Notes Math., No. 793, 1980). Zbl0433.46049MR82h:46075
  18. [Rie1] M. A. RIEFFEL, Induced Representations of C*-Algebras (Adv. Math., Vol. 13, 1974, pp. 176-257). Zbl0284.46040MR50 #5489
  19. [Rie2] M. A. RIEFFEL, Morita Equivalence for Operator Algebras (Proc. Symp. Pure Math., Vol. 38, 1982, pp. 285-298). Zbl0541.46044MR84k:46045
  20. [Rie3] M. A. RIEFFEL, Applications of Strong Morita Equivalence to Transformation Group C*-Algebras (Proc. Symp. Pure Math., Vol. 38, 1982, pp. 299-310). Zbl0526.46055MR84k:46046
  21. [Rie4] M. A. RIEFFEL, Proper Actions of Groups on C*-Algebras, preprint. 
  22. [W1] A. WEINSTEIN, The Local Structure of Poisson Manifolds (J. Diff. Geom., Vol. 18, 1983, pp. 523-557). Zbl0524.58011MR86i:58059
  23. [W2] A. WEINSTEIN, Symplectic Groupoids and Poisson Manifolds (Bull. Am. Math. Soc., Vol. 16, 1987, pp. 101-104). Zbl0618.58020MR88c:58019
  24. [W3] A. WEINSTEIN, Blowing up Realizations of Heisenberg-Poisson Manifolds (Bull. Sci. Math., 2e Série, Vol. 113, 1989, pp. 381-406). Zbl0693.58004MR91b:58082
  25. [W4] A. WEINSTEIN, Poisson Geometry of the Principal Series and Nonlinearizable Structures (J. Diff. Geom., Vol. 25, 1987, pp. 55-73). Zbl0592.58024MR88g:58071
  26. [W5] A. WEINSTEIN, The Groupoid for a Bundle of Symplectic Manifolds, private communication. 
  27. [WX] A. WEINSTEIN and P. XU, Extensions of Symplectic Groupoids and Quantization (J. Reine Angew. Math., Vol. 417, 1991, pp. 159-189). Zbl0722.58021MR92k:58094
  28. [X1] P. XU, Morita Equivalent Symplectic Groupoids (Séminaire Sud-Rhodanien, Berkeley (Symplectic geometry, groupoids, and integrable systems) Springer-M.S.R.I. publications, 1991, pp. 291-311). Zbl0733.58013MR92i:46086
  29. [X2] P. XU, Morita Equivalence of Poisson Manifolds (Commun. Math. Phys., Vol. 142, 1991, pp. 493-509). Zbl0746.58034MR93a:58069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.