Sur les modules de covariants

Michel Brion

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 1, page 1-21
  • ISSN: 0012-9593

How to cite

top

Brion, Michel. "Sur les modules de covariants." Annales scientifiques de l'École Normale Supérieure 26.1 (1993): 1-21. <http://eudml.org/doc/82334>.

@article{Brion1993,
author = {Brion, Michel},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {action of reductive groups; algebra of invariants; graded modules; algebra of polynomial functions; covariants},
language = {fre},
number = {1},
pages = {1-21},
publisher = {Elsevier},
title = {Sur les modules de covariants},
url = {http://eudml.org/doc/82334},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Brion, Michel
TI - Sur les modules de covariants
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 1
SP - 1
EP - 21
LA - fre
KW - action of reductive groups; algebra of invariants; graded modules; algebra of polynomial functions; covariants
UR - http://eudml.org/doc/82334
ER -

References

top
  1. [Ba-Ha] H. BASS et W. HABOUSH, Linearizing certain reductive group actions (Trans. A.M.S., vol. 292, n° 2, 1985, p. 463-482). Zbl0602.14047MR87d:14039
  2. [Bo] N. BOURBAKI, Algèbre commutative (Hermann, Paris, 1965). 
  3. [Br-Di] M. BRION et J. DIXMIER, Comportement asymptotique des covariants (Bull. Soc. math. France, vol. 119, 1991, p. 217-230). Zbl0769.14016MR93a:20068
  4. [Br] B. BROER, On the generating function associated to a system of binary forms (Indag. Mathem., vol. 1, 1990, p. 15-25). Zbl0703.15031MR91d:13008
  5. [Di] J. DIXMIER, Quelques résultats et conjectures concernant les séries de Poincaré des invariants des formes binaires (dans : Séminaire d'algèbre, Lecture Notes in Math., vol. 1146, 1985, Springer-Verlag, Berlin/Heidelberg/New York). Zbl0578.14011MR88e:15011
  6. [Ha] R. HARTSHORNE, Stable reflexive sheaves (Math. Ann., vol. 254, 1980, p. 121-176). Zbl0431.14004MR82b:14011
  7. [He-Ku] J. HERZOG et E. KUNZ, Der kanonische Modul eines Cohen-Macaulay Rings (Lecture Notes in Math., vol. 238, 1971, Springer-Verlag, Berlin/Heidelberg/New York). Zbl0231.13009MR54 #304
  8. [Ho] R. HOWE, Asymptotics of dimensions of invariants for finite groups (J. of Alg., vol. 122, 1989, p. 374-379). Zbl0693.20005MR90d:16001
  9. [Kn1] F. KNOP, Über die Glattheit von Quotientenabbildungen (Manuscripta Math., vol. 56, 1986, p. 419-427). Zbl0585.14033MR88f:14041
  10. [Kn2] F. KNOP, Der kanonische Modul eines Invariantenringes (J. of Alg., vol. 127, 1989, p. 40-54). Zbl0716.20021MR90k:14053
  11. [Kn-Li] F. KNOP et P. LITTELMANN, Der Grad erzeugender Funktionen von Invarianteringen (Math. Z., vol. 196, 1987, p. 211-229). Zbl0635.20017MR88k:14028
  12. [Kr] H. KRAFT, Geometrische Methoden in der Invariantentheorie (Vieweg, Braunschweig/Wiesbaden, 1985). Zbl0669.14003
  13. [Lu1] D. LUNA, Slices étales (Bull. Soc. math. France, Mémoire, vol. 33, 1973, p. 81-105). Zbl0286.14014MR49 #7269
  14. [Lu2] D. LUNA, Adhérences d'orbites et invariants (Invent. Math., vol. 29, 1975, p. 231-238). Zbl0315.14018MR51 #12879
  15. [Sc1] G. SCHWARZ, Representations of simple Lie groups with regular rings of invariants (Invent. Math., vol. 49, 1978, p. 167-191). Zbl0391.20032MR80m:14032
  16. [Sc2] G. SCHWARZ, Lifting smooth homotopies of orbit spaces (Publ. Math. I.H.E.S., vol. 51, 1980, p. 37-135). Zbl0449.57009MR81h:57024
  17. [Sh] O. V. SHCHVARTSMAN, Some remarks on the Chevalley theorem (Funct. Anal. and its Appl., vol. 16, n° 3, 1982, p. 237-238). Zbl0511.20038MR83m:15021
  18. [Sl] P. SLODOWY, Der Scheibensatz für algebraische Transformationsgruppen (dans Kraft, Slodowy, Springer éd. : Algebraische Transformationsgruppen und Invariantentheorie, Birkhäuser, Basel/Boston/Berlin, 1989). 
  19. [Sp] T. SPRINGER, Aktionen reduktiver Gruppen (dans Kraft, Slodowy) Springer éd. : Algebraische Transformationsgruppen und Invariantentheorie, Birkhäuser, Basel/Boston/Berlin, 1989). Zbl0706.14029MR1044583
  20. [St1] R. P. STANLEY, Hilbert functions of graded algebras (Adv. Math., vol. 28, 1978, p. 57-83). Zbl0384.13012MR58 #5637
  21. [St2] R. P. STANLEY, Combinatorics and invariant theory (dans D. K. RAY-CHAUDHURI éd. : Relations between combinatorics and other parts of mathematics, Proc. in Symp. in Pure Math., vol. 34, 1979, p. 345-356). Zbl0411.22006MR80e:15020
  22. [VdB1] M. VAN DEN BERGH, Cohen-Macaulayness of modules of covariants (Invent. Math., vol. 106, 1991, p. 389-410). Zbl0761.13004MR92m:14063
  23. [VdB2] M. VAN DEN BERGH, A converse of Stanley's conjecture for SL(2) (preprint, 1991, Antwerpen). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.