The admissible dual of SL ( N ) . I

Colin J. Bushnell; Philip C. Kutzko

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 2, page 261-280
  • ISSN: 0012-9593

How to cite


Bushnell, Colin J., and Kutzko, Philip C.. "The admissible dual of ${\rm SL}(N)$. I." Annales scientifiques de l'École Normale Supérieure 26.2 (1993): 261-280. <>.

author = {Bushnell, Colin J., Kutzko, Philip C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {non-Archimedean local field; reductive group; supercuspidal representations; tamely ramified representations},
language = {eng},
number = {2},
pages = {261-280},
publisher = {Elsevier},
title = {The admissible dual of $\{\rm SL\}(N)$. I},
url = {},
volume = {26},
year = {1993},

AU - Bushnell, Colin J.
AU - Kutzko, Philip C.
TI - The admissible dual of ${\rm SL}(N)$. I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 2
SP - 261
EP - 280
LA - eng
KW - non-Archimedean local field; reductive group; supercuspidal representations; tamely ramified representations
UR -
ER -


  1. [BZ] I. N. BERNSTEIN and A. V. ZELEVINSKY, Induced Representations of Reductive p-Adic Groups (Ann. Scient. Ec. Norm. Sup., 4e Sér., Vol. 10, pp. 441-472). Zbl0412.22015MR58 #28310
  2. [Bo] A. BOREL, Admissible Representations of a Semisimple Group Over a Local Field with Vectors Fixed Under an Iwahori Subgroup (Invent. Math., Vol. 35, 1976, pp. 233-259). Zbl0334.22012MR56 #3196
  3. [Bu] C. J. BUSHNELL, Hereditary orders, Gauss Sums and Supercuspidal Representations of GLN (J. reine angew. Math., Vol. 375-376, 1987, pp. 184-210). Zbl0601.12025MR88e:22024
  4. [BF] C. J. BUSHNELL and A. FRÖHLICH, Non-Abelian Congruence Gauss Sums and p-Adic Simple Algebras (Proc. London Math. Soc., (3), Vol. 50, 1985, pp. 207-264). Zbl0558.12007
  5. [BK] C. J. BUSHNELL and P. C. KUTZKO, The Admissible Dual of GL (N) via Compact Open Subgroups (Ann. Math. Studies, No. 129, Princeton University Press, 1992). Zbl0787.22016MR94h:22007
  6. [Ca] H. CARAYOL, Représentations cuspidales du groupe linéaire (Ann. Scient. Éc. Norm. Sup., 4e Sér., Vol. 17, 1984, pp. 191-225). Zbl0549.22009MR86f:22019
  7. [C] L. CLOZEL, Invariant Harmonic Analysis on the Schwartz Space of a Reductive p-Adic Group. Harmonic Analysis on Reductive Groups, W. BARKER and P. SALLY Eds. (Progr. Math., No. 101, 1991, pp. 101-121). Zbl0760.22023MR93h:22020
  8. [GK1] S. S. GELBART and A. W. KNAPP, Irreducible Constituents of Principal Series of SLn (k) (Duke Math. J., Vol. 48, 1981, pp. 313-326). Zbl0473.22010MR82j:22018
  9. [GK2] S. S. GELBART and A. W. KNAPP, L-Indistinguishability and R-Groups for the Special Linear Group (Adv. Math., Vol. 43, 1982, pp. 101-121). Zbl0493.22005MR83j:22009
  10. [H] R. E. HOWE, Some Qualitative Results on the Representation Theory of GLn Over a p-Adic Local Field (Pacific J. Math., Vol. 73, 1977, pp. 479-538). Zbl0385.22009MR58 #11242
  11. [Iw] N. IWAHORI, Generalised Tits Systems (Bruhat Decomposition) on p-Adic Semisimple Groups. Algebraic Groups and Discontinuous Subgroups, A. BOREL and G. MOSTOW, Proc. Symposia Pure Math., IX, Am. Math. Soc., Providence, 1966, pp. 71-83. Zbl0199.06901MR35 #6693
  12. [IM] N. IWAHORI and H. MATSUMOTO, On Some Bruhat Decomposition and the Structure of the Hecke Rings of the p-Adic Chevalley Groups (Publ. Math. I.H.E.S., Vol. 25, 1965, pp. 5-48). Zbl0228.20015MR32 #2486
  13. [KS] P. C. KUTZKO and P. J. SALLY Jr., All Supercuspidal Representations of SLl Over a p-Adic Field are Induced. Representation Theory of Reductive Groups, Proceedings of the Utah Conference on Representation Theory (Progr. Math., No. 40, 1983). Zbl0538.22011
  14. [M] L. E. MORRIS, Tamely Ramified Intertwining Algebras, Preprint, 1991. Zbl0854.22022
  15. [MS] A. MOY and P. J. SALLY Jr., Supercuspidal Representations of SLn Over a p-Adic Field : the Tame Case (Duke Math. J., Vol. 51, 1984, pp. 149-161). Zbl0539.22014
  16. [Re] I. REINER, Maximal Orders, Academic Press, New York, 1975. Zbl0305.16001MR52 #13910
  17. [T] M. TADIĆ, Notes on Representations of Non-Archimedean SL (n) (Pacific J. Math., Vol. 152, 1992, pp. 375-396). Zbl0724.22017MR92k:22029

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.