Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential U = ρ + ( 1 / ρ ) - k cos φ

Ljubomir Gavrilov; Mohammed Ouazzani-Jamil; Régis Caboz

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 5, page 545-564
  • ISSN: 0012-9593

How to cite

top

Gavrilov, Ljubomir, Ouazzani-Jamil, Mohammed, and Caboz, Régis. "Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential $U=\rho +(1/\rho )-k\cos \phi $." Annales scientifiques de l'École Normale Supérieure 26.5 (1993): 545-564. <http://eudml.org/doc/82349>.

@article{Gavrilov1993,
author = {Gavrilov, Ljubomir, Ouazzani-Jamil, Mohammed, Caboz, Régis},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {motion of a particle; potential field; Hamiltonian system; topology; bifurcations; invariant level sets},
language = {eng},
number = {5},
pages = {545-564},
publisher = {Elsevier},
title = {Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential $U=\rho +(1/\rho )-k\cos \phi $},
url = {http://eudml.org/doc/82349},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Gavrilov, Ljubomir
AU - Ouazzani-Jamil, Mohammed
AU - Caboz, Régis
TI - Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential $U=\rho +(1/\rho )-k\cos \phi $
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 5
SP - 545
EP - 564
LA - eng
KW - motion of a particle; potential field; Hamiltonian system; topology; bifurcations; invariant level sets
UR - http://eudml.org/doc/82349
ER -

References

top
  1. [1] M. ADLER and P. VAN MOERBEKE, Algebraic Completely Integrable Systems : a systematic approach, Perspectives in Mathematics, Academic Press (to appear in 1992). Zbl0455.58017
  2. [2] F. M. El-SABAA, Solution of Equations of Problm of Motion of a Heavy Rigid Body About a Fixed Point in the Kowalevskaya's Case Using θ - Function (Celestial Mech., Vol. 29, 1983, pp. 249-253.). Zbl0513.70008MR84e:70004
  3. [3] A. T. FOMENKO, Integrability and Nonintegrability in Geometry and Mechanics, Kluwer Acad. Publishers, 1988. Zbl0675.58018MR90c:58054
  4. [4] L. GAVRILOV, On the Geometry of Gorjatchev-Tchaplygin top (Compt. rend. Acad. bulg. Sci., Vol. 40, No 9, pp. 33-36, 1987). Zbl0632.58021MR89b:58091
  5. [5] L. GAVRILOV, Bifurcations of Invariant Manifolds in the Generalized Hénon-Heiles System (Physica D, Vol. 34, 1989, pp. 223-239). Zbl0689.58014MR90h:58040
  6. [6] L. GAVRILOV, Non-Integrability of the Equation of Heavy Gyrostat (Comp. Mathematica, Vol. 82, 1992, pp. 275-291). Zbl0748.70003MR93d:70008
  7. [7] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. Zbl0408.14001MR80b:14001
  8. [8] G. KOLOSSOFF, Zur Rotation eines Körpers im Kowalewski'schen Falle, (Mathematische Annalen, Vol. 56, 1903, pp. 265-272). Zbl33.0762.01JFM33.0762.01
  9. [9] M. P. KHARLAMOV, Bifurcation of Common Levels of First Integrals of the Kovalevskaya Problem (PMM U.S.S.R., Vol. 47, No 6, 1983, pp. 737-743). Zbl0579.70003MR86h:70005
  10. [10] M. P. KHARLAMOV, Topological Analysis of Classical Integrable Systems in the Dynamics of the Rigid Body (Soviet Math. Dokl., Vol. 28, No 3, 1983, pp. 802-805). Zbl0561.58021MR86c:70003
  11. [11] S. KOVALEVSKAYA, Sur le problème de la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 12, 1889, pp. 177-232). MR1916790JFM21.0935.01
  12. [12] S. M. NATANZON, Klein Surfaces (Russian Math. Surveys, Vol. 45, 6, 1990, pp. 53-108). Zbl0734.30037MR92i:14029
  13. [13] NGUEN T'EN ZUNG and A. T. FOMENKO, Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere (Russian Math. Surveys, Vol. 45, 6, 1990, pp. 109-135). Zbl0721.58022MR92h:58088
  14. [14] Encyklopädie der Mathematischen Wissenschaften, Band II, 2 Teil (Leipzig 1901), pp. 766-768. 
  15. [15] H. YOSHIDA (Celestial Mech., Vol. 31, 1983, p. 363). Zbl0556.70014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.