Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux. I

Serge Alinhac

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 2, page 225-251
  • ISSN: 0012-9593

How to cite

top

Alinhac, Serge. "Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux. I." Annales scientifiques de l'École Normale Supérieure 28.2 (1995): 225-251. <http://eudml.org/doc/82382>.

@article{Alinhac1995,
author = {Alinhac, Serge},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {wave equation; lifespan; energy inequality},
language = {fre},
number = {2},
pages = {225-251},
publisher = {Elsevier},
title = {Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux. I},
url = {http://eudml.org/doc/82382},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Alinhac, Serge
TI - Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux. I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 2
SP - 225
EP - 251
LA - fre
KW - wave equation; lifespan; energy inequality
UR - http://eudml.org/doc/82382
ER -

References

top
  1. [1] S. ALINHAC, Approximation près du temps d'explosion des solutions d'équations d'ondes quasi-linéaires en dimension deux (S.I.A.M. J. Math. An., à paraître). Zbl0870.35063
  2. [2] S. ALINHAC, Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux (Inv. Math., à paraître). Zbl0798.35129
  3. [3] L. HÖRMANDER, The Lifespan of Classical Solutions of non Linear Hyperbolic Equations (Mittag-Leffler report n° 5, 1985). 
  4. [4] L. HÖRMANDER, Non Linear Hyperbolic Differential Equations (Lectures, 1986-1987). 
  5. [5] F. JOHN et S. KLAINERMAN, Almost Global Existence to Nonlinear Wave Equations in Three Space Dimensions (Comm. Pure App. Math., vol. 37, 1984, p. 443-455). Zbl0599.35104MR85k:35147
  6. [6] F. JOHN, Blow up of Radial Solutions of utt = c2 (ut) Δu in Three Space Dimensions (Math. Aplicada e Comp., vol. 4, 1985, p. 3-18). Zbl0597.35082MR87c:35114
  7. [7] F. JOHN, Existence for Large Times of Strict Solutions of Nonlinear Wave Equations in Three Space Dimensions for Small Initial Data, (Comm. Pure Appl. Math., vol. 40, 1987, p. 79-109). Zbl0662.35070MR87m:35128
  8. [8] F. JOHN, Solutions of Quasilinear Wave Equations with Small Initial Data ; the Third Phase, (Non Linear Hyperbolic Equations, Proceedings, Bordeaux 1988, Lect. Notes Math. 1402, Springer Verlag, p. 155-184). Zbl0694.35012MR91e:35132
  9. [9] S. KLAINERMAN, Weighted L∞ and L1 Estimates for Solutions to the Classical Wave Equation in Three Space dimensions (Comm. Pure Appl. Math., vol. 37, 1984, p. 269-288). Zbl0583.35068MR85k:35146
  10. [10] S. KLAINERMAN, Uniform Decay Estimates and the Lorentz Invariance of the Classical Wave Equation, (Comm. Pure Appl. Math., vol. 38, 1985, 321-332). Zbl0635.35059MR86i:35091
  11. [11] A. MAJDA, Compressible Fluid Flows and Systems of Conservation Laws (Springer Appl. Math. Sc., vol. 53 1984). Zbl0537.76001MR85e:35077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.