Characters of supercuspidal representations of classical groups

Fiona Murnaghan

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 1, page 49-105
  • ISSN: 0012-9593

How to cite

top

Murnaghan, Fiona. "Characters of supercuspidal representations of classical groups." Annales scientifiques de l'École Normale Supérieure 29.1 (1996): 49-105. <http://eudml.org/doc/82405>.

@article{Murnaghan1996,
author = {Murnaghan, Fiona},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {germ expansion; formal degree; supercuspidal representation; Fourier transform; measure; character expansion},
language = {eng},
number = {1},
pages = {49-105},
publisher = {Elsevier},
title = {Characters of supercuspidal representations of classical groups},
url = {http://eudml.org/doc/82405},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Murnaghan, Fiona
TI - Characters of supercuspidal representations of classical groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 1
SP - 49
EP - 105
LA - eng
KW - germ expansion; formal degree; supercuspidal representation; Fourier transform; measure; character expansion
UR - http://eudml.org/doc/82405
ER -

References

top
  1. [BF] C. J. BUSHNELL and A. FROHLICH, Non-abelian congruence Gauss sums and p-adic simple algebras (Proc. London Math. Soc., Vol. 50, 1985, pp. 207-264). Zbl0558.12007MR86g:11071
  2. [C] L. CLOZEL, Characters of non-connected reductive p-adic groups (Canad. J. Math., Vol. 39, 1987, pp. 149-167). Zbl0629.22008MR88i:22039
  3. [DL] P. DELIGNE and G. LUSZTIG, Representations of reductive groups over finite fields (Ann. Math., Vol. 103, pp. 103-161). Zbl0336.20029MR52 #14076
  4. [HC1] HARISH-CHANDRA, Harmonic analysis on reductive p-adic groups (Lecture Notes in Math., Vol. 162, Springer-Verlag, Berlin, 1970). Zbl0202.41101MR54 #2889
  5. [HC2] HARISH-CHANDRA, Admissible distributions on reductive p-adic groups, in Lie Theories and Their Applications (Queen's Papers in Pure and Applied Mathematics, Vol. 48, 1978, pp. 281-347). Zbl0433.22012MR58 #28313
  6. [H1] R. HOWE, On the character of Weil's representation (Trans. A.M.S., Vol. 117, 1973, pp. 287-298). Zbl0263.22014MR47 #5180
  7. [H2] R. HOWE, Kirillov theory for compact p-adic groups (Pacific J. Math., Vol. 73, 1977, pp. 365-381). Zbl0385.22007MR58 #28314
  8. [J] D. JABON, The supercuspidal representations of U(2,1) and GSp4 over a local field (thesis, University of Chicago, 1989). 
  9. [K1] D. KAZHDAN, Proof of Springer's Hypothesis (Israel J. Math., Vol. 28, 1977, pp. 272-286). Zbl0391.22006MR58 #5959
  10. [K2] D. KAZHDAN, Cuspidal geometry of p-adic groups (J. Analyse Math., Vol. 47, 1986, pp. 1-36). Zbl0634.22009MR88g:22017
  11. [L] G. LUSZTIG, Irreducible representations of finite classical groups (Invent. Math., Vol. 43, 1977, pp. 125-175). Zbl0372.20033MR57 #3228
  12. [Mor1] L. MORRIS, Some tamely ramified supercuspidal representations of symplectic groups (Proc. London Math. Soc., Vol. 63, 1991, pp. 519-551). Zbl0746.22013MR92i:22017
  13. [Mor2] L. MORRIS, Tamely ramified supercuspidal representations of classical groups I. Filtrations (Ann. scient. Ec. Norm. Sup., 4e série, t. 24, 1991, pp. 705-738). Zbl0756.20006MR93c:22032
  14. [Mor3] L. MORRIS, Tamely ramified supercuspidal representations of classical groups II : Representation theory (Ann. scient. Ec. Norm. Sup., 4e série, t. 25, 1992, pp. 233-274). Zbl0782.22012MR93h:22032
  15. [Moy] A. MOY, Representations of U(2, 1) over a p-adic field (J. fur die reine u. angewandte Math., Vol. 372, 1986, pp. 178-208). Zbl0589.22015MR88a:22031
  16. [Mu1] F. MURNAGHAN, Local character expansions and Shalika germs for GL(n) (Math. Ann., to appear). Zbl0841.22008
  17. [Mu2] F. MURNAGHAN, Local character expansions for supercuspidal representations of U(3) (Canadian J. Math., to appear). Zbl0909.22030
  18. [Mu3] F. MURNAGHAN, Characters of supercuspidal representations of SL(n) (Pacific J. Math., to appear). Zbl0848.22022
  19. [PR] G. PRASAD and M. RAGHUNATHAN, Topological central extensions of semisimple groups over local fields I (Ann. Math., Vol. 119, 1984, pp. 143-201). Zbl0552.20025MR86e:20051a
  20. [W] J.-L. WALDSPURGER, Homogénéité de certaines distributions sur les groupes p-adiques, preprint. 

NotesEmbed ?

top

You must be logged in to post comments.