Hyper-Lie Poisson structures

Ping Xu

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 3, page 279-302
  • ISSN: 0012-9593

How to cite

top

Xu, Ping. "Hyper-Lie Poisson structures." Annales scientifiques de l'École Normale Supérieure 30.3 (1997): 279-302. <http://eudml.org/doc/82432>.

@article{Xu1997,
author = {Xu, Ping},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Kähler structures; symplectic geometry; Lie-Poisson structure},
language = {eng},
number = {3},
pages = {279-302},
publisher = {Elsevier},
title = {Hyper-Lie Poisson structures},
url = {http://eudml.org/doc/82432},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Xu, Ping
TI - Hyper-Lie Poisson structures
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 3
SP - 279
EP - 302
LA - eng
KW - Kähler structures; symplectic geometry; Lie-Poisson structure
UR - http://eudml.org/doc/82432
ER -

References

top
  1. [1] M. F. ATIYAH, Hyper-Kähler manifolds (Collection : Complex Geometry and Analysis, Springer-Verlag Lecture Notes in Mathematics, Vol. 1422, 1990, pp. 1-13). Zbl0699.53068MR91g:53050
  2. [2] M. F. ATIYAH and N. J. HITCHIN, The geometry and dynamics of magnetic monopoles, Princeton University Press, 1988. Zbl0671.53001MR89k:53067
  3. [3] O. BIQUARD, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes (Math. Ann. Vol. 304, 1996, pp. 253-276). Zbl0843.53027MR97c:53066
  4. [4] O. BIQUARD and P. GAUDUCHON, Hyperkähler metrics on cotangent bundles of hermitian symmetric spaces, preprint. Zbl0879.53051
  5. [5] S. K. DONALDSON, Nahm's equations and the classification of monopoles (Commun. Math. Phys. Vol. 96, 1984, pp. 387-407). Zbl0603.58042MR86c:58039
  6. [6] N. J. HITCHIN, Hyperkähler manifolds (Séminaire Bourbaki 44e année, No. 748, Astérisque, Vol. 206, 1992, pp. 137-166). Zbl0979.53051MR94f:53087
  7. [7] N. J. HITCHIN, A. KARLHEDE, U. LINSTROM and M. ROCEK, Hyperkähler metrics and supersymmetry, Commun. Math. Phys. Vol. 108, 1987, pp. 535-589. Zbl0612.53043
  8. [8] Y. KOSMANN-SCHWARZBACH and F. MAGRI, Poisson-Nijenhuis structures (Ann. Inst. H. Poincaré Phys. Théor. Vol. 53, 1990, pp. 35-81). Zbl0707.58048MR92b:17026
  9. [9] A. G. KOVALEV, Nahm's equations and complex adjoint orbits (Quart. J. Math. Oxford Ser. (2) Vol. 47, 1996, pp. 41-58). Zbl0852.53033MR97c:53070
  10. [10] P. B. KRONHEIMER, A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group (J. of LMS, Vol. 42, 1990, pp. 193-208). Zbl0721.22006MR92b:53031
  11. [11] P. B. KRONHEIMER, Instantons and the geometry of the nilpotent variety (J. Diff. Geom. Vol. 32, 1990, pp. 473-490). Zbl0725.58007MR91m:58021
  12. [12] J. MARSDEN and A. WEINSTEIN, Reduction of symplectic manifolds with symmetry (Rep. Math. Phys. Vol. 5, 1974, pp. 121-129). Zbl0327.58005MR53 #6633
  13. [13] R. PENROSE, Nonlinear gravitons and curved twistor theory, Gen. Ralativ. Grav. Vol. 7, 1976, pp. 31-52. Zbl0354.53025MR55 #11905
  14. [14] M. VERGNE, Instantons et correspondance de Kostant-Sekiguchi, (C. R. Acad. Sci. Paris., t. 320, Série I, 1995, pp. 901-906). Zbl0833.22010MR96c:22026
  15. [15] A. WEINSTEIN, The local structure of Poisson manifolds, (J. Diff. Geom. Vol. 18, 1983, pp. 523-557). Zbl0524.58011MR86i:58059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.