La R -matrice pour les algèbres quantiques de type affine non tordu

Ilaria Damiani

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 4, page 493-523
  • ISSN: 0012-9593

How to cite

top

Damiani, Ilaria. "La $R$-matrice pour les algèbres quantiques de type affine non tordu." Annales scientifiques de l'École Normale Supérieure 31.4 (1998): 493-523. <http://eudml.org/doc/82467>.

@article{Damiani1998,
author = {Damiani, Ilaria},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {simple Lie algebra; Kac-Moody algebra; quantum group; -matrix; Killing form; PBW basis},
language = {fre},
number = {4},
pages = {493-523},
publisher = {Elsevier},
title = {La $R$-matrice pour les algèbres quantiques de type affine non tordu},
url = {http://eudml.org/doc/82467},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Damiani, Ilaria
TI - La $R$-matrice pour les algèbres quantiques de type affine non tordu
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 4
SP - 493
EP - 523
LA - fre
KW - simple Lie algebra; Kac-Moody algebra; quantum group; -matrix; Killing form; PBW basis
UR - http://eudml.org/doc/82467
ER -

References

top
  1. [1] J. BECK, Braid group action and quantum affine algebras, (Commun. Math. Phys., vol. 165, 1994, p. 555-568). Zbl0807.17013MR95i:17011
  2. [2] J. BECK, Convex bases of PBW type for quantum affine algebras, (Commun. Math. Phys., vol. 165, 1994, p. 193-199). Zbl0828.17016MR96b:17008
  3. [3] N. BOURBAKI, Groupes et algèbres de Lie 4, 5, 6, Hermann, Paris, 1968. 
  4. [4] I. DAMIANI, The Highest Coefficient of detHη and the Center of the Specialization at Odd Roots of Unity for Untwisted Affine Quantum Algebras, (J. Algebra, vol. 186, 1996, p. 736-780). Zbl0881.17012MR98b:17012
  5. [5] I. DAMIANI et C. DE CONCINI, Quantum groups and Poisson groups in (Baldoni-Picardello, Representations of Lie groups and quantum groups, Longman Scientific and Technical, 1994, p. 1-45). Zbl0828.17012MR97m:16070
  6. [6] C. DE CONCINI, V. G. KAC, Representations of quantum groups at roots of 1, (Progr. in Math., vol. 92, 1990, p. 471-506, Birkhäuser). Zbl0738.17008MR92g:17012
  7. [7] V. G. DRINFELD, A new realization of Yangians and quantized affine algebras, (Soviet Math. Dokl., vol. 36, 1988, n° 2, p. 212-216). Zbl0667.16004MR88j:17020
  8. [8] V. G. DRINFELD, Hopf algebras and quantum Yang-Baxter equation, (Soviet Math. Dokl., vol. 32, 1985, p. 254-258). Zbl0588.17015MR87h:58080
  9. [9] V. G. DRINFELD, Quantum groups, (Proc. ICM, Berkeley, 1986, p. 798-820). Zbl0667.16003MR89f:17017
  10. [10] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, (Springer-Verlag, USA 1972). Zbl0254.17004MR48 #2197
  11. [11] M. JIMBO, A q-difference analogue of U(g) and the Yang-Baxter equation, (Lett. Math. Phys., vol. 10, 1985, p. 63-69). Zbl0587.17004MR86k:17008
  12. [12] V. G. KAC, Infinite Dimensional Lie Algebras, (Birkhäuser Boston, Inc., USA, 1983). Zbl0537.17001MR86h:17015
  13. [13] V. G. KAC et D. A. KAZHDAN, Structure of representations with highest weight of infinite-dimensional Lie algebras, (Adv. Math., vol. 34, 1979, p. 97-108). Zbl0427.17011MR81d:17004
  14. [14] S. M. KHOROSHKIN et V. N. TOLSTOY, Universal R-matrix for quantized(super) algebras, (Commun. Math. Phys., vol. 141, 1991, p. 599-617). Zbl0744.17015MR93a:16031
  15. [15] S. M. KHOROSHKIN et V. N. TOLSTOY, The universal R-matrix for quantum nontwisted affine Lie algebras, (Funkz. Analiz i ego pril., vol. 26:1, 1992, p. 85-88). Zbl0758.17011
  16. [16] A. N. KIRILLOV et N. RESHETIKHIN, q-Weyl Group and a Multiplicative Formula for Universal R-Matrices, (Commun. Math. Phys., vol. 134, 1990, p. 421-431). Zbl0723.17014MR92c:17023
  17. [17] S. Z. LEVENDORSKII et Ya. S. SOIBELMAN, Quantum Weyl group and multiplicative formula for the R-matrix of a simple Lie algebra, (Funct. Analysis and its Appl., 2 vol. 25, 1991, p. 143-145). Zbl0729.17010MR93a:17017
  18. [18] S. Z. LEVENDORSKII et Ya. S. SOIBELMAN, Some applications of quantum Weyl group I, (J. Geom. Phys., vol. 7, 1990, p. 241-254). Zbl0729.17009MR92g:17016
  19. [19] S. Z. LEVENDORSKII, Ya. S. SOIBELMAN et V. STUKOPIN, The Quantum Weyl Group and the Universal Quantum R-Matrix for Affine Lie Algebra A(1)1, (Lett. Math. Phys., vol. 27, 1993, p. 253-264). Zbl0776.17011MR94e:17021
  20. [20] G. LUSZTIG, Finite-dimensional Hopf algebras arising from quantum groups, (J. Amer. Math. Soc., vol. 3, 1990, p. 257-296). Zbl0695.16006MR91e:17009
  21. [21] G. LUSZTIG, Introduction to quantum groups, (Birkhäuser Boston, USA, 1993). Zbl0788.17010MR94m:17016
  22. [22] G. LUSZTIG, Quantum groups at roots of 1, (Geom. Ded., vol. 35, 1990, p. 89-113). Zbl0714.17013MR91j:17018
  23. [23] H. MATSUMOTO, Générateurs et relations des groupes de Weyl généralisés, (C. R. Acad. Sci. Paris, tome 258, Série II, 1964, p. 3419-3422). Zbl0128.25202MR32 #1294
  24. [24] M. ROSSO, An Analogue of P.B.W. Theorem and the Universal R-Matrix for Uhsl(N + 1), (Commun. Math. Phys., vol. 124, 1989, p. 307). Zbl0694.17006MR90h:17019
  25. [25] M. ROSSO, Certaines formes bilinéaires sur les groupes quantiques et une conjecture de Schechtman et Varchenko, (C. R. Acad. Sci. Paris, tome 314, Série I, 1992, p. 5-8). Zbl0753.17027MR93i:17020
  26. [26] T. TANISAKI, Killing forms, Harish-Chandra isomorphisms and universal R-matrices for Quantum Algebras, in (Infinite Analysis Part B, Adv. Series in Math. Phys., vol. 16, 1992, p. 941-962). Zbl0870.17007MR93k:17040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.