Types et inductions pour les représentations modulaires des groupes p -adiques. With an appendix by Marie-France Vignéras

J.-F. Dat

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 1, page 1-38
  • ISSN: 0012-9593

How to cite

top

Dat, J.-F.. "Types et inductions pour les représentations modulaires des groupes $p$-adiques. With an appendix by Marie-France Vignéras." Annales scientifiques de l'École Normale Supérieure 32.1 (1999): 1-38. <http://eudml.org/doc/82483>.

@article{Dat1999,
author = {Dat, J.-F.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic groups; modular representations; theory of types; Hecke algebras; reductive algebraic group; complex representations; intertwining operator},
language = {fre},
number = {1},
pages = {1-38},
publisher = {Elsevier},
title = {Types et inductions pour les représentations modulaires des groupes $p$-adiques. With an appendix by Marie-France Vignéras},
url = {http://eudml.org/doc/82483},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Dat, J.-F.
TI - Types et inductions pour les représentations modulaires des groupes $p$-adiques. With an appendix by Marie-France Vignéras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 1
SP - 1
EP - 38
LA - fre
KW - -adic groups; modular representations; theory of types; Hecke algebras; reductive algebraic group; complex representations; intertwining operator
UR - http://eudml.org/doc/82483
ER -

References

top
  1. [1] J.N. BERNSTEIN, Notes on Harvard Lectures. 
  2. [Be] J.-N. BERNSTEIN, P. DELIGNE, D. KAZHDAN et M.F. VIGNÉRAS, Représentations des groupes réductifs sur un corps local, Travaux en cours. Hermann, Paris 1984. Zbl0544.00007
  3. [BH] C.J. BUSHNELL and G. HENNIART, Local tame lifting for GL(N), Publ. IHES, 83, 1996, pp. 105-233. Zbl0878.11042MR98m:11129
  4. [BK3] C.J. BUSHNELL and P.C. KUTZKO, Semisimple types in GL(n). Preprint, 1996. 
  5. [BK1] C.J. BUSHNELL and P.C. KUTZKO, Smooth representations of reductive p-adic groups : Structure via types. Princeton university press, Annals of maths. Studies, No 129, 1993. MR94h:22007
  6. [BK2] C.J. BUSHNELL and P.C. KUTZKO, The Admissible Dual of GL(n) via open compact groups. To appear in Proc. of L.M.S., 1996. 
  7. [Ca] R. CARTER, Finite groups of Lie type, Wiley Interscience, 1995. 
  8. [Cas] W. CASSELMAN, Introduction to the theory of admissible representations of p-adic groups. Preprint, 1974-1993. 
  9. [Lu] G. LUSZTIG, Representations of Affine Hecke Algebras. Asterisque, 171-172, 1989, pp. 73-84. Zbl0699.22027MR90k:22028
  10. [Mo] L. MORRIS, Tamely Ramified Intertwining Algebras, Invent. Math., 114, 1993, pp. 1-54. Zbl0854.22022MR94g:22035
  11. [Ro] A. ROCHE, Types and Hecke algebras for principal series representations of split reductive p-adic groups. Ann. Sci. de l'ENS, 31, 1998, pp. 361-413. Zbl0903.22009MR99d:22028
  12. [Rog] J.D. ROGAWSKI, On modules over the Hecke algebra of a p-adic group. Invent. Math., 79, 1985, pp. 443-465. Zbl0579.20037MR86j:22028
  13. [Ti] J. TITS, Reductive groups over local fields. Proc. Symp. Pure Math., 33, 1996, pp. 29-69. Zbl0415.20035MR80h:20064
  14. [Vig2] M.F. VIGNÉRAS, Induced R-representations of p-adic reductive groups. Preprint, 1996. 
  15. [Vig1] M.F. VIGNÉRAS, Représentations l-modulaires d'un groupe p-adique avec l différent de p. Birkhäuser, Series Progress in Mathematics, 137, 1996. Zbl0859.22001MR97g:22007
  16. [1] VIGNÉRAS M.-F.Représentations &λ-modulaires d'un groupe réductif p-adique. Birkhäuser PM 137, 1996. Zbl0859.22001MR97g:22007
  17. [2] VIGNÉRAS M.-F.Induced R-representations of p-adic groups. Preprint MPI 1996. A paraître dans Selecta Mathematica. 
  18. [3] BERNSTEIN J.-N.Le centre de Bernstein. Rédigé par Deligne P. dans J.N. Bernstein, P. Deligne, D. Kazhdan, M.-F. Vignéras. Représentations des groupes réductifs sur un corps local. Travaux en cours, Hermann Paris 1984. Zbl0599.22016MR86e:22028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.