Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers
Annales scientifiques de l'École Normale Supérieure (1999)
- Volume: 32, Issue: 6, page 813-834
- ISSN: 0012-9593
Access Full Article
topHow to cite
topHolland, Martin P.. "Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers." Annales scientifiques de l'École Normale Supérieure 32.6 (1999): 813-834. <http://eudml.org/doc/82503>.
@article{Holland1999,
author = {Holland, Martin P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {regular representations; quantizations; Kleinian singularities; rings of differential operators},
language = {eng},
number = {6},
pages = {813-834},
publisher = {Elsevier},
title = {Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers},
url = {http://eudml.org/doc/82503},
volume = {32},
year = {1999},
}
TY - JOUR
AU - Holland, Martin P.
TI - Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 6
SP - 813
EP - 834
LA - eng
KW - regular representations; quantizations; Kleinian singularities; rings of differential operators
UR - http://eudml.org/doc/82503
ER -
References
top- [1] A. ALTMAN and S. KLEIMAN, Introduction to Grothendieck duality theory, Lect. Notes in Math., Vol. 146, 1970, Springer. Zbl0215.37201MR43 #224
- [2] D. BAER, W. GEIGLE and H. LENZING, The preprojective algebra of a tame hereditary algebra, Comm. Algebra, Vol. 15, 1987, pp. 425-457. Zbl0612.16015MR88i:16036
- [3] A. BEILINSON and J.N. BERNSTEIN, Localisation de g-modules, C.R. Acad. Sci. Sér A-B, Vol. 292, 1981, pp. 15-18. Zbl0476.14019MR82k:14015
- [4] J.-E. BJÖRK, Rings of differential operators, North-Holland, 1979. Zbl0499.13009
- [5] W. BORHO and J.-L. BRYLINSKI, Differential operators on homogeneous spaces I, Invent. Math., Vol. 69, 1982, pp. 437-476. Zbl0504.22015MR84b:17007
- [6] W. CRAWLEY-BOEVEY, Geometry of the moment map for representations of quivers, preprint, 1998. Zbl1037.16007
- [7] W. CRAWLEY-BOEVEY, Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities, preprint, 1998. Zbl0958.16014
- [8] W. CRAWLEY-BOEVEY and M.P. HOLLAND, Noncommutative deformations of Kleinian singularities, Duke Math. J., Vol. 92, 1998, pp. 605-635. Zbl0974.16007MR99f:14003
- [9] V. DLAB and C.M. RINGEL, The preprojective algebra of a modulated graph. In : Representation theory II, Proc. Ottawa 1979, eds V. Dlab and P. Gabriel, Lec. Notes in Math., Vol. 832, Springer, 1980, pp. 216-231. Zbl0489.16024MR83c:16022
- [10] A. GROTHENDIECK, Eléments de géométrie algébrique IV, Publ. Math. IHES, Vol. 28, 1966. Zbl0144.19904
- [11] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math., Vol. 52, Springer, 1983. Zbl0531.14001MR57 #3116
- [12] T.J. HODGES and S.P. SMITH, Rings of differential operators and the Beilinson-Bernstein equivalence of categories, Proc. Amer. Math. Soc., Vol. 93, 1985, pp. 379-386. Zbl0566.14011MR86j:17015
- [13] V.G. KAC, Some remarks on representations of quivers and infinite root systems. In : Representation theory II, Proc. Ottawa 1979, eds V. Dlab and P. Gabriel, Lect. Notes in Math., Vol. 832, Springer, 1980, pp. 311-327. Zbl0471.16023MR82j:16051
- [14] A.D. KING, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford, Vol. 45, 1994, pp. 515-530. Zbl0837.16005MR96a:16009
- [15] F. KNOP, A Harish-Chandra homomorphism for reductive group actions, Ann. of Math., Vol. 140, 1994, pp. 253-288. Zbl0828.22017MR95h:14045
- [16] P.B. KRONHEIMER, The construction of ALE spaces as hyper-Kähler quotients, J. Diff. Geom., Vol. 29, 1989, pp. 665-683. Zbl0671.53045MR90d:53055
- [17] L. Le BRUYN and C. PROCESI, Semisimple representations of quivers, Trans. Amer. Math. Soc., Vol. 317, 1990, pp. 585-598. Zbl0693.16018MR90e:16048
- [18] T. LEVASSEUR, Relèvements d'opérateurs différentiels sur les anneaux d'invariants. In Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Progress in Math., Vol. 92, Birkhaüser, 1990, pp. 449-470. Zbl0733.16009MR92f:16033
- [19] T. LEVASSEUR and J.T. STAFFORD, Rings of differential operators on classical rings of invariants, Memoirs of the AMS, Vol. 412, 1989. Zbl0691.16019MR90i:17018
- [20] G. LUSZTIG, Quivers, perverse sheaves and quantized enveloping algebras, J. Amer. Math. Soc., Vol. 4, 1991, pp. 365-421. Zbl0738.17011MR91m:17018
- [21] J.C. MCCONNELL and J.C. ROBSON, Noncommutative Noetherian rings, Wiley, 1988.
- [22] J.C. MCCONNELL and J.T. STAFFORD, Gelfand-Kirillov dimension and associated graded modules, J. Algebra, Vol. 125, 1989, pp. 197-214. Zbl0688.16030MR90i:16002
- [23] J. MCKAY, Graphs, singularities and finite groups, Proc. Symp. Pure Math., Vol. 37, 1980, pp. 183-186. Zbl0451.05026MR82e:20014
- [24] D. MUMFORD, J. Fogarty and F. Kirwan, Geometric Invariant Theory, Third edition, Springer 1994. Zbl0797.14004MR95m:14012
- [25] I. MUSSON, Rings of differential operators on invariant rings of tori, Trans. Amer. Math. Soc., Vol. 303, 1987, pp. 805-827. Zbl0628.13019MR88m:32019
- [26] I. MUSSON and M. VAN den BERGH, Invariants under tori of rings of differential operators and related topics, preprint. Zbl0928.16019
- [27] H. NAKAJIMA, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., Vol. 76, 1994, pp. 365-416. Zbl0826.17026MR95i:53051
- [28] H. NAKAJIMA, Varieties associated with quivers. In Representation theory of algebras and related topics, eds R. Bautista et al., Canadian Math. Soc. Conf. Proc., Amer. Math. Soc., Vol. 19, 1996. Zbl0870.16008MR97m:16022
- [29] C.M. RINGEL, The rational invariants of the tame quivers, Invent. Math., Vol. 58, 1980, pp. 217-239. Zbl0433.15009MR81f:16048
- [30] G.W. SCHWARZ, Lifting differential operators from orbit spaces, Ann. Sci. Éc. Norm. Sup., t. 28, 1995, pp. 253-305. Zbl0836.14032MR96f:14061
- [31] G.W. SCHWARZ, Differential operators on quotients of simple groups, J. Algebra, Vol. 169, 1994, pp. 248-273. Zbl0835.14019MR95i:16027
- [32] M. VAN den BERGH, Differential operators on semi-invariants for tori and weighted projective spaces, Topics in invariant theory (M. P. Malliavin ed.), Lect. Notes in Math., Vol. 1478, Springer Verlag, 1991, pp. 255-272. Zbl0802.13005MR93h:16046
- [33] C.A. WEIBEL, An introduction to homological algebra, C.U.P., 1994. Zbl0797.18001MR95f:18001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.