Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers

Martin P. Holland

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 6, page 813-834
  • ISSN: 0012-9593

How to cite

top

Holland, Martin P.. "Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers." Annales scientifiques de l'École Normale Supérieure 32.6 (1999): 813-834. <http://eudml.org/doc/82503>.

@article{Holland1999,
author = {Holland, Martin P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {regular representations; quantizations; Kleinian singularities; rings of differential operators},
language = {eng},
number = {6},
pages = {813-834},
publisher = {Elsevier},
title = {Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers},
url = {http://eudml.org/doc/82503},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Holland, Martin P.
TI - Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 6
SP - 813
EP - 834
LA - eng
KW - regular representations; quantizations; Kleinian singularities; rings of differential operators
UR - http://eudml.org/doc/82503
ER -

References

top
  1. [1] A. ALTMAN and S. KLEIMAN, Introduction to Grothendieck duality theory, Lect. Notes in Math., Vol. 146, 1970, Springer. Zbl0215.37201MR43 #224
  2. [2] D. BAER, W. GEIGLE and H. LENZING, The preprojective algebra of a tame hereditary algebra, Comm. Algebra, Vol. 15, 1987, pp. 425-457. Zbl0612.16015MR88i:16036
  3. [3] A. BEILINSON and J.N. BERNSTEIN, Localisation de g-modules, C.R. Acad. Sci. Sér A-B, Vol. 292, 1981, pp. 15-18. Zbl0476.14019MR82k:14015
  4. [4] J.-E. BJÖRK, Rings of differential operators, North-Holland, 1979. Zbl0499.13009
  5. [5] W. BORHO and J.-L. BRYLINSKI, Differential operators on homogeneous spaces I, Invent. Math., Vol. 69, 1982, pp. 437-476. Zbl0504.22015MR84b:17007
  6. [6] W. CRAWLEY-BOEVEY, Geometry of the moment map for representations of quivers, preprint, 1998. Zbl1037.16007
  7. [7] W. CRAWLEY-BOEVEY, Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities, preprint, 1998. Zbl0958.16014
  8. [8] W. CRAWLEY-BOEVEY and M.P. HOLLAND, Noncommutative deformations of Kleinian singularities, Duke Math. J., Vol. 92, 1998, pp. 605-635. Zbl0974.16007MR99f:14003
  9. [9] V. DLAB and C.M. RINGEL, The preprojective algebra of a modulated graph. In : Representation theory II, Proc. Ottawa 1979, eds V. Dlab and P. Gabriel, Lec. Notes in Math., Vol. 832, Springer, 1980, pp. 216-231. Zbl0489.16024MR83c:16022
  10. [10] A. GROTHENDIECK, Eléments de géométrie algébrique IV, Publ. Math. IHES, Vol. 28, 1966. Zbl0144.19904
  11. [11] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math., Vol. 52, Springer, 1983. Zbl0531.14001MR57 #3116
  12. [12] T.J. HODGES and S.P. SMITH, Rings of differential operators and the Beilinson-Bernstein equivalence of categories, Proc. Amer. Math. Soc., Vol. 93, 1985, pp. 379-386. Zbl0566.14011MR86j:17015
  13. [13] V.G. KAC, Some remarks on representations of quivers and infinite root systems. In : Representation theory II, Proc. Ottawa 1979, eds V. Dlab and P. Gabriel, Lect. Notes in Math., Vol. 832, Springer, 1980, pp. 311-327. Zbl0471.16023MR82j:16051
  14. [14] A.D. KING, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford, Vol. 45, 1994, pp. 515-530. Zbl0837.16005MR96a:16009
  15. [15] F. KNOP, A Harish-Chandra homomorphism for reductive group actions, Ann. of Math., Vol. 140, 1994, pp. 253-288. Zbl0828.22017MR95h:14045
  16. [16] P.B. KRONHEIMER, The construction of ALE spaces as hyper-Kähler quotients, J. Diff. Geom., Vol. 29, 1989, pp. 665-683. Zbl0671.53045MR90d:53055
  17. [17] L. Le BRUYN and C. PROCESI, Semisimple representations of quivers, Trans. Amer. Math. Soc., Vol. 317, 1990, pp. 585-598. Zbl0693.16018MR90e:16048
  18. [18] T. LEVASSEUR, Relèvements d'opérateurs différentiels sur les anneaux d'invariants. In Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Progress in Math., Vol. 92, Birkhaüser, 1990, pp. 449-470. Zbl0733.16009MR92f:16033
  19. [19] T. LEVASSEUR and J.T. STAFFORD, Rings of differential operators on classical rings of invariants, Memoirs of the AMS, Vol. 412, 1989. Zbl0691.16019MR90i:17018
  20. [20] G. LUSZTIG, Quivers, perverse sheaves and quantized enveloping algebras, J. Amer. Math. Soc., Vol. 4, 1991, pp. 365-421. Zbl0738.17011MR91m:17018
  21. [21] J.C. MCCONNELL and J.C. ROBSON, Noncommutative Noetherian rings, Wiley, 1988. 
  22. [22] J.C. MCCONNELL and J.T. STAFFORD, Gelfand-Kirillov dimension and associated graded modules, J. Algebra, Vol. 125, 1989, pp. 197-214. Zbl0688.16030MR90i:16002
  23. [23] J. MCKAY, Graphs, singularities and finite groups, Proc. Symp. Pure Math., Vol. 37, 1980, pp. 183-186. Zbl0451.05026MR82e:20014
  24. [24] D. MUMFORD, J. Fogarty and F. Kirwan, Geometric Invariant Theory, Third edition, Springer 1994. Zbl0797.14004MR95m:14012
  25. [25] I. MUSSON, Rings of differential operators on invariant rings of tori, Trans. Amer. Math. Soc., Vol. 303, 1987, pp. 805-827. Zbl0628.13019MR88m:32019
  26. [26] I. MUSSON and M. VAN den BERGH, Invariants under tori of rings of differential operators and related topics, preprint. Zbl0928.16019
  27. [27] H. NAKAJIMA, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., Vol. 76, 1994, pp. 365-416. Zbl0826.17026MR95i:53051
  28. [28] H. NAKAJIMA, Varieties associated with quivers. In Representation theory of algebras and related topics, eds R. Bautista et al., Canadian Math. Soc. Conf. Proc., Amer. Math. Soc., Vol. 19, 1996. Zbl0870.16008MR97m:16022
  29. [29] C.M. RINGEL, The rational invariants of the tame quivers, Invent. Math., Vol. 58, 1980, pp. 217-239. Zbl0433.15009MR81f:16048
  30. [30] G.W. SCHWARZ, Lifting differential operators from orbit spaces, Ann. Sci. Éc. Norm. Sup., t. 28, 1995, pp. 253-305. Zbl0836.14032MR96f:14061
  31. [31] G.W. SCHWARZ, Differential operators on quotients of simple groups, J. Algebra, Vol. 169, 1994, pp. 248-273. Zbl0835.14019MR95i:16027
  32. [32] M. VAN den BERGH, Differential operators on semi-invariants for tori and weighted projective spaces, Topics in invariant theory (M. P. Malliavin ed.), Lect. Notes in Math., Vol. 1478, Springer Verlag, 1991, pp. 255-272. Zbl0802.13005MR93h:16046
  33. [33] C.A. WEIBEL, An introduction to homological algebra, C.U.P., 1994. Zbl0797.18001MR95f:18001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.