Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
Pavel Etingof; Wee Liang Gan; Victor Ginzburg; Alexei Oblomkov
Publications Mathématiques de l'IHÉS (2007)
- Volume: 105, page 91-155
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topEtingof, Pavel, et al. "Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products." Publications Mathématiques de l'IHÉS 105 (2007): 91-155. <http://eudml.org/doc/104226>.
@article{Etingof2007,
abstract = {The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras associated with wreath-products.},
author = {Etingof, Pavel, Gan, Wee Liang, Ginzburg, Victor, Oblomkov, Alexei},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {spherical subalgebras; symplectic reflection algebras; wreath products; quantum Hamiltonian reductions; algebras of differential operators; representation spaces; extended Dynkin quivers; reflection functors; generalized preprojective algebras},
language = {eng},
pages = {91-155},
publisher = {Springer},
title = {Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products},
url = {http://eudml.org/doc/104226},
volume = {105},
year = {2007},
}
TY - JOUR
AU - Etingof, Pavel
AU - Gan, Wee Liang
AU - Ginzburg, Victor
AU - Oblomkov, Alexei
TI - Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
JO - Publications Mathématiques de l'IHÉS
PY - 2007
PB - Springer
VL - 105
SP - 91
EP - 155
AB - The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras associated with wreath-products.
LA - eng
KW - spherical subalgebras; symplectic reflection algebras; wreath products; quantum Hamiltonian reductions; algebras of differential operators; representation spaces; extended Dynkin quivers; reflection functors; generalized preprojective algebras
UR - http://eudml.org/doc/104226
ER -
References
top- 1. A. Beilinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 1–50, Amer. Math. Soc., Providence, RI, 1993. Zbl0790.22007MR1237825
- 2. Y. Berest, P. Etingof, V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J., 118 (2003), 279-337 Zbl1067.16047MR1980996
- 3. R. Bezrukavnikov, M. Finkelberg, V. Ginzburg, with an Appendix by P. Etingof, Cherednik algebras and Hilbert schemes in characteristic p, Represent. Theory, 10 (2006), 254-298 Zbl1130.14005MR2219114
- 4. M. Boyarchenko, Quantization of minimal resolutions of Kleinian singularities, Adv. Math., 211 (2007), 244-265 Zbl1138.16012MR2313534
- 5. W. Crawley-Boevey, Decomposition of Marsden–Weinstein reductions for representations of quivers, Compos. Math., 130 (2002), 225-239 Zbl1031.16013MR1883820
- 6. W. Crawley-Boevey, M.P. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J., 92 (1998), 605-635 Zbl0974.16007MR1620538
- 7. C. Dunkl, E. Opdam, Dunkl operators for complex reflection groups, Proc. London Math. Soc., 86 (2003), 70-108 Zbl1042.20025MR1971464
- 8. P. Etingof, Cherednik and Hecke algebras of varieties with a finite group action, preprint. math.QA/0406499.
- 9. P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, Invent. Math., 147 (2002), 243-348 Zbl1061.16032MR1881922
- 10. P. Etingof, V. Ginzburg and E. Rains, in preparation.
- 11. W.L. Gan, Reflection functors and symplectic reflection algebras for wreath products, Adv. Math., 205 (2006), 599-630 Zbl1160.16008MR2258267
- 12. W.L. Gan, V. Ginzburg, Deformed preprojective algebras and symplectic reflection algebras for wreath products, J. Algebra, 283 (2005), 350-363 Zbl1133.16013MR2102087
- 13. W. L. Gan and V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik algebras, IMPR, Int. Math. Res. Pap., 2006 (2006), Article ID 26439. math.RT/0409262. Zbl1158.14006MR2210660
- 14. I. Gordon, A remark on rational Cherednik algebras and differential operators on the cyclic quiver, Glasg. Math. J., 48 (2006), 145-160 Zbl1169.16302MR2224935
- 15. I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes I, II, Adv. Math., 198 (2005), 222–274 and Duke Math. J., 132 (2006), 73–135. math.RA/0407516 and math.RT/0410293. Zbl1084.14005MR2183255
- 16. N. Guay, Cherednik algebras and Yangians, Int. Math. Res. Not., 2005 (2005), 3551-3593 Zbl1096.20006MR2199856
- 17. N. Guay, Affine Yangians and deformed double current algebras in type A, Adv. Math., 211 (2007), 436-484 Zbl1142.17008MR2323534
- 18. N. Guay, Quantum algebras and symplectic reflection algebras for wreath products, preprint. Zbl1208.17015
- 19. M.P. Holland, Quantization of the Marsden–Weinstein reduction for extended Dynkin quivers, Ann. Sci. Éc. Norm. Supér., IV. Sér., 32 (1999), 813-834 Zbl1036.16024MR1717577
- 20. P.B. Kronheimer, The construction of ALE spaces as hyper-Kahler quotients, J. Differ. Geom., 29 (1989), 665-683 Zbl0671.53045MR992334
- 21. G. Lusztig, Quivers, Perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., 4 (1991), 365-421 Zbl0738.17011MR1088333
- 22. G. Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier, 50 (2000), 461-489 Zbl0958.20036MR1775358
- 23. A. Maffei, A remark on quiver varieties and Weyl groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 1 (2002), 649-686 Zbl1143.14309MR1990675
- 24. A. Mellit, Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation, Algebra Discrete Math., 2004 (2004), 89-110 Zbl1072.14006MR2146107
- 25. S. Montarani, Finite dimensional representations of symplectic reflection algebras associated to wreath products II, preprint. math.RT/0501156. Zbl1157.16303MR2336007
- 26. I. Musson, Hilbert schemes and noncommutative deformations of type A Kleinian singularities, J. Algebra, 293 (2005), 102-129 Zbl1082.14008MR2173968
- 27. H. Nakajima, Reflection functors for quiver varieties and Weyl group actions, Math. Ann., 327 (2003), 671-721 Zbl1060.16017MR2023313
- 28. A. Oblomkov, Deformed Harish–Chandra homomorphism for the cyclic quiver, preprint. math.RT/0504395. Zbl1169.16013MR2318640
- 29. C. Ringel, The rational invariants of the tame quivers, Invent. Math., 58 (1980), 217-239 Zbl0433.15009MR571574
- 30. J.-L. Verdier, Stratifications de Whitney et théorème de Bertini–Sard, Invent. Math., 36 (1976), 295-312 Zbl0333.32010MR481096
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.