Sur la torsion des structures de contact tendues

Vincent Colin

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 2, page 267-286
  • ISSN: 0012-9593

How to cite

top

Colin, Vincent. "Sur la torsion des structures de contact tendues." Annales scientifiques de l'École Normale Supérieure 34.2 (2001): 267-286. <http://eudml.org/doc/82543>.

@article{Colin2001,
author = {Colin, Vincent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {contact manifold; tight contact structure},
language = {fre},
number = {2},
pages = {267-286},
publisher = {Elsevier},
title = {Sur la torsion des structures de contact tendues},
url = {http://eudml.org/doc/82543},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Colin, Vincent
TI - Sur la torsion des structures de contact tendues
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 2
SP - 267
EP - 286
LA - fre
KW - contact manifold; tight contact structure
UR - http://eudml.org/doc/82543
ER -

References

top
  1. [1] Bennequin D, Entrelacements et équations de Pfaff, Astérisque107–108 (1983) 83-161. Zbl0573.58022
  2. [2] Chekanov Y, Contact disjunction in tight three-manifolds, Preprint, 1999. 
  3. [3] Colin V, Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris, Série I324 (1997) 659-663. Zbl0876.57051MR1447038
  4. [4] Colin V, Recollement de variétés de contact tendues, Bull. Soc. Math. France127 (1999) 101-127. Zbl0930.53053MR1700468
  5. [5] Colin V., Structures de contact tendues sur les variétés toroïdales et approximation de feuilletages sans composante de Reeb, Prépublication 99/11-2 de l'université de Nantes. 
  6. [6] Eliashberg Y, Classification of over-twisted contact structures on 3-manifolds, Invent. Math.98 (1989) 623-637. Zbl0684.57012MR1022310
  7. [7] Eliashberg Y, Contact 3-manifolds, twenty years since J. Martinet's work, Ann. Inst. Fourier42 (1992) 165-192. Zbl0756.53017MR1162559
  8. [8] Eliashberg Y, Filling by holomorphic discs and its applications, London Math. Soc. Lect. Notes Ser.151 (1991) 45-67. Zbl0731.53036MR1171908
  9. [9] Eliashberg Y, Thurston W, Confoliations, Univ. Lect. Ser., 13, 1998. Zbl0893.53001MR1483314
  10. [10] Gabai D, Foliations and the topology of 3-manifolds, J. Differ. Geom.18 (1983) 445-503. Zbl0533.57013MR723813
  11. [11] Giroux E, Convexité en topologie de contact, Comment. Math. Helvetici66 (1991) 18-33. Zbl0766.53028MR1129802
  12. [12] Giroux E, Topologie de contact en dimension 3, Séminaire Bourbaki760 (1992–1993) 1-27. 
  13. [13] Giroux E, Une structure de contact, même tendue est plus ou moins tordue, Ann. Scient. Éc. Norm. Sup.27 (1994) 697-705. Zbl0819.53018MR1307678
  14. [14] Giroux E, Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math.135 (1999) 789-802. Zbl0969.53044MR1669264
  15. [15] Hempel J., Three Manifolds, Ann. Math. Studies, Princeton Univ. Press. Zbl0345.57001MR415619
  16. [16] Jaco W., Lectures on Three Manifolds Topology, Amer. Math. Soc. Zbl0433.57001
  17. [17] Kanda Y, The classification of tight contact structures on the 3-torus, Commun. Anal. Geom.5 (1997) 413-438. Zbl0899.53028MR1487723
  18. [18] Waldhausen F, On irreducible 3-manifolds which are sufficiently large, Ann. of Math.87 (1968) 56-88. Zbl0157.30603MR224099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.