Recollement de variétés de contact tendues

Vincent Colin

Bulletin de la Société Mathématique de France (1999)

  • Volume: 127, Issue: 1, page 43-69
  • ISSN: 0037-9484

How to cite

top

Colin, Vincent. "Recollement de variétés de contact tendues." Bulletin de la Société Mathématique de France 127.1 (1999): 43-69. <http://eudml.org/doc/87801>.

@article{Colin1999,
author = {Colin, Vincent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {universal tightness; incompressible torus; surgery along disks and tori; tight contact structures; graph manifold; toroidal homology spheres},
language = {fre},
number = {1},
pages = {43-69},
publisher = {Société mathématique de France},
title = {Recollement de variétés de contact tendues},
url = {http://eudml.org/doc/87801},
volume = {127},
year = {1999},
}

TY - JOUR
AU - Colin, Vincent
TI - Recollement de variétés de contact tendues
JO - Bulletin de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 127
IS - 1
SP - 43
EP - 69
LA - fre
KW - universal tightness; incompressible torus; surgery along disks and tori; tight contact structures; graph manifold; toroidal homology spheres
UR - http://eudml.org/doc/87801
ER -

References

top
  1. [Be] BENNEQUIN (D.). — Entrelacements et équations de Pfaff, Astérisque 107-108, 1983, p. 87-161. Zbl0573.58022MR86e:58070
  2. [Co1] COLIN (V.). — Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C.R. Acad. Sci. Paris, t. 324, série 1, 1997, p. 659-663. Zbl0876.57051MR98e:57036
  3. [Co2] COLIN (V.). — Sur la stabilité, l'existence et l'unicité des structures de contact en dimension 3. — Thèse n° 96 de l'ENS-Lyon, 1998. 
  4. [El1] ELIASHBERG (Y.). — Classification of over-twisted contact structures on 3-manifolds, Inv. Math., t. 98, 1989, p. 623-637. Zbl0684.57012MR90k:53064
  5. [El2] ELIASHBERG (Y.). — Contact 3-manifolds, twenty years since J. Martinet's work, Ann. Inst. Fourier, t. 42, 1992, p. 165-192. Zbl0756.53017MR93k:57029
  6. [El3] ELIASHBERG (Y.). — Filling by holomorphic discs and its applications, London Math. Soc. Lect. Notes Ser., t. 151, 1991, p. 45-67. Zbl0731.53036MR93g:53060
  7. [ElTh] ELIASHBERG (Y.), THURSTON (W.). — Confoliations. — Univ. Lect. Ser., vol. 13, 1998. Zbl0893.53001MR98m:53042
  8. [Ga] GABAI (D.). — Foliations on the topology of 3-manifolds, III, J. Diff. Geom., t. 26, 1987, p. 479-536. Zbl0639.57008MR89a:57014b
  9. [Gi1] GIROUX (E.). — Convexité en topologie de contact, Comment. Math. Helvetici, t. 66, 1991, p. 18-33. Zbl0766.53028MR93b:57029
  10. [Gi2] GIROUX (E.). — Topologie de contact en dimension 3, Sém. Bourbaki, t. 760, 1992-1993, p. 1-27. 
  11. [Gi3] GIROUX (E.). — Une structure de contact, même tendue est plus ou moins tordue, Ann. Scient. École Norm. Sup., t. 27, 1995, p. 697-705. Zbl0819.53018MR96b:57034
  12. [Gi4] GIROUX (E.). — Structures de contact en dimension trois et bifurcations des feuilletages des surfaces, en préparation. 
  13. [Go] GOMPF (R.). — Handlebody construction of Stein surfaces, Ann. Of Math., à paraître. Zbl0919.57012
  14. [He] HEMPEL (J.). — Three manifolds, Ann. Math. Stu., Princeton Univ. Press., t. 86, 1973. MR54 #3702
  15. [Ja] JACO (W.). — Lectures on three manifolds topology, A.M.S., t. 43, 1977. Zbl0433.57001MR81k:57009
  16. [Ka] KANDA (Y.). — The classification of tight contact structures on the 3-torus, Comm. Anal. Geom., t. 5, 1997, p. 413-438. Zbl0899.53028MR99c:57054
  17. [Lu] LUTZ (R.). — Structures de contact sur les fibrés principaux en cercles de dimension 3, Ann. Inst. Fourier, t. 27, 1977, p. 1-15. Zbl0328.53024MR57 #17668
  18. [ML1] MAKAR-LIMANOV (S.). — Morse surgeries of index 0 and 1 on tight manifolds. — preprint, 1996. 
  19. [ML2] MAKAR-LIMANOV (S.). — Tight contact structure on solid tori, Trans. Amer. Math. Soc., t. 1013-1044, 1998 ; CMP 96 : 16. Zbl0894.53036MR98e:53046
  20. [Ma] MARTINET (J.). — Formes de contact sur les variétés de dimension 3, Springer Lect. Notes in Math., t. 209, 1971, p. 142-163. Zbl0215.23003MR50 #3263
  21. [Wa] WALDHAUSEN (F.). — On irreducible 3-manifolds which are sufficiently large, Ann. of Math., t. 87, 1968, p. 56-88. Zbl0157.30603MR36 #7146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.