Additive representation in thin sequences, I : Waring's problem for cubes
Jörg Brüdern; Koichi Kawada; Trevor D Wooley
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 4, page 471-501
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBrüdern, Jörg, Kawada, Koichi, and Wooley, Trevor D. "Additive representation in thin sequences, I : Waring's problem for cubes." Annales scientifiques de l'École Normale Supérieure 34.4 (2001): 471-501. <http://eudml.org/doc/82548>.
@article{Brüdern2001,
author = {Brüdern, Jörg, Kawada, Koichi, Wooley, Trevor D},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {exceptional sets; sparse sequences; sums of cubes},
language = {eng},
number = {4},
pages = {471-501},
publisher = {Elsevier},
title = {Additive representation in thin sequences, I : Waring's problem for cubes},
url = {http://eudml.org/doc/82548},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Brüdern, Jörg
AU - Kawada, Koichi
AU - Wooley, Trevor D
TI - Additive representation in thin sequences, I : Waring's problem for cubes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 4
SP - 471
EP - 501
LA - eng
KW - exceptional sets; sparse sequences; sums of cubes
UR - http://eudml.org/doc/82548
ER -
References
top- [1] Brüdern J, A problem in additive number theory, Math. Proc. Cambridge Philos. Soc.103 (1988) 27-33. Zbl0655.10041MR913447
- [2] Brüdern J, On Waring's problem for cubes, Math. Proc. Cambridge Philos. Soc.109 (1991) 229-256. Zbl0729.11046MR1085392
- [3] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, II: the binary Goldbach problem, Mathematika, to appear. Zbl1023.11053MR1924492
- [4] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, III: asymptotic formulae, Acta Arith., to appear. Zbl0995.11055MR1865386
- [5] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, IV: lower bound methods, Quart. J. Math. Oxford, to appear. Zbl1037.11062MR1874488
- [6] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, V: mixed problems of Waring's type, Math. Scand., to appear. Zbl1023.11052MR1973942
- [7] Brüdern J, Watt N, On Waring's problem for four cubes, Duke Math. J.77 (1995) 583-606. Zbl0828.11051MR1324635
- [8] Davenport H, On Waring's problem for cubes, Acta Math.71 (1939) 123-143. Zbl0021.10601MR26JFM65.0144.04
- [9] Davenport H, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Ann Arbor Publishers, Ann Arbor, 1962. Zbl1089.11500MR159786
- [10] Estermann T, Einige Sätze über quadratfreie Zahlen, Math. Ann.105 (1931) 653-662. MR1512732JFM57.0222.02
- [11] Hardy G.H, Littlewood J.E, Some problems of “Partitio Numerorum”. I, A new solution of Waring's problem, Göttinger Nachrichten (1920) 33-54. Zbl47.0114.02JFM47.0114.02
- [12] Kawada K, On the sum of four cubes, Mathematika43 (1996) 323-348. Zbl0879.11051MR1433279
- [13] Linnik J.V, On the representation of large numbers as sums of seven cubes, Mat. Sbornik12 (1943) 218-224. Zbl0063.03579MR9388
- [14] Vaughan R.C, On Waring's problem for cubes, J. Reine Angew. Math.365 (1986) 122-170. Zbl0574.10046MR826156
- [15] Vaughan R.C, A new iterative method in Waring's problem, Acta Math.162 (1989) 1-71. Zbl0665.10033MR981199
- [16] Vaughan R.C, On Waring's problem for cubes II, J. London Math. Soc.39 (2) (1989) 205-218. Zbl0677.10034MR991656
- [17] Vaughan R.C, The Hardy–Littlewood Method, Cambridge University Press, Cambridge, 1997. Zbl0868.11046
- [18] Vaughan R.C, Wooley T.D, On Waring's problem: some refinements, Proc. London Math. Soc.63 (3) (1991) 35-68. Zbl0736.11058MR1105718
- [19] Watson G.L, A proof of the seven cube theorem, J. London Math. Soc.26 (1951) 153-156. Zbl0042.04101MR47691
- [20] Wooley T.D, On simultaneous additive equations, II, J. Reine Angew. Math.419 (1991) 141-198. Zbl0721.11011MR1116923
- [21] Wooley T.D, Large improvements in Waring's problem, Ann. of Math.135 (2) (1992) 131-164. Zbl0754.11026MR1147960
- [22] Wooley T.D, Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behaviour, Invent. Math.122 (1995) 421-451. Zbl0851.11055MR1359599
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.