Additive representation in thin sequences, I : Waring's problem for cubes

Jörg Brüdern; Koichi Kawada; Trevor D Wooley

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 4, page 471-501
  • ISSN: 0012-9593

How to cite

top

Brüdern, Jörg, Kawada, Koichi, and Wooley, Trevor D. "Additive representation in thin sequences, I : Waring's problem for cubes." Annales scientifiques de l'École Normale Supérieure 34.4 (2001): 471-501. <http://eudml.org/doc/82548>.

@article{Brüdern2001,
author = {Brüdern, Jörg, Kawada, Koichi, Wooley, Trevor D},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {exceptional sets; sparse sequences; sums of cubes},
language = {eng},
number = {4},
pages = {471-501},
publisher = {Elsevier},
title = {Additive representation in thin sequences, I : Waring's problem for cubes},
url = {http://eudml.org/doc/82548},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Brüdern, Jörg
AU - Kawada, Koichi
AU - Wooley, Trevor D
TI - Additive representation in thin sequences, I : Waring's problem for cubes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 4
SP - 471
EP - 501
LA - eng
KW - exceptional sets; sparse sequences; sums of cubes
UR - http://eudml.org/doc/82548
ER -

References

top
  1. [1] Brüdern J, A problem in additive number theory, Math. Proc. Cambridge Philos. Soc.103 (1988) 27-33. Zbl0655.10041MR913447
  2. [2] Brüdern J, On Waring's problem for cubes, Math. Proc. Cambridge Philos. Soc.109 (1991) 229-256. Zbl0729.11046MR1085392
  3. [3] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, II: the binary Goldbach problem, Mathematika, to appear. Zbl1023.11053MR1924492
  4. [4] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, III: asymptotic formulae, Acta Arith., to appear. Zbl0995.11055MR1865386
  5. [5] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, IV: lower bound methods, Quart. J. Math. Oxford, to appear. Zbl1037.11062MR1874488
  6. [6] Brüdern J., Kawada K., Wooley T.D., Additive representation in thin sequences, V: mixed problems of Waring's type, Math. Scand., to appear. Zbl1023.11052MR1973942
  7. [7] Brüdern J, Watt N, On Waring's problem for four cubes, Duke Math. J.77 (1995) 583-606. Zbl0828.11051MR1324635
  8. [8] Davenport H, On Waring's problem for cubes, Acta Math.71 (1939) 123-143. Zbl0021.10601MR26JFM65.0144.04
  9. [9] Davenport H, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Ann Arbor Publishers, Ann Arbor, 1962. Zbl1089.11500MR159786
  10. [10] Estermann T, Einige Sätze über quadratfreie Zahlen, Math. Ann.105 (1931) 653-662. MR1512732JFM57.0222.02
  11. [11] Hardy G.H, Littlewood J.E, Some problems of “Partitio Numerorum”. I, A new solution of Waring's problem, Göttinger Nachrichten (1920) 33-54. Zbl47.0114.02JFM47.0114.02
  12. [12] Kawada K, On the sum of four cubes, Mathematika43 (1996) 323-348. Zbl0879.11051MR1433279
  13. [13] Linnik J.V, On the representation of large numbers as sums of seven cubes, Mat. Sbornik12 (1943) 218-224. Zbl0063.03579MR9388
  14. [14] Vaughan R.C, On Waring's problem for cubes, J. Reine Angew. Math.365 (1986) 122-170. Zbl0574.10046MR826156
  15. [15] Vaughan R.C, A new iterative method in Waring's problem, Acta Math.162 (1989) 1-71. Zbl0665.10033MR981199
  16. [16] Vaughan R.C, On Waring's problem for cubes II, J. London Math. Soc.39 (2) (1989) 205-218. Zbl0677.10034MR991656
  17. [17] Vaughan R.C, The Hardy–Littlewood Method, Cambridge University Press, Cambridge, 1997. Zbl0868.11046
  18. [18] Vaughan R.C, Wooley T.D, On Waring's problem: some refinements, Proc. London Math. Soc.63 (3) (1991) 35-68. Zbl0736.11058MR1105718
  19. [19] Watson G.L, A proof of the seven cube theorem, J. London Math. Soc.26 (1951) 153-156. Zbl0042.04101MR47691
  20. [20] Wooley T.D, On simultaneous additive equations, II, J. Reine Angew. Math.419 (1991) 141-198. Zbl0721.11011MR1116923
  21. [21] Wooley T.D, Large improvements in Waring's problem, Ann. of Math.135 (2) (1992) 131-164. Zbl0754.11026MR1147960
  22. [22] Wooley T.D, Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behaviour, Invent. Math.122 (1995) 421-451. Zbl0851.11055MR1359599

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.