A subconvexity bound for Hecke L-functions
Étienne Fouvry; Henryk Iwaniec
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 5, page 669-683
- ISSN: 0012-9593
Access Full Article
topHow to cite
topFouvry, Étienne, and Iwaniec, Henryk. "A subconvexity bound for Hecke L-functions." Annales scientifiques de l'École Normale Supérieure 34.5 (2001): 669-683. <http://eudml.org/doc/82554>.
@article{Fouvry2001,
author = {Fouvry, Étienne, Iwaniec, Henryk},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {approximate functional equation; imaginary quadratic field; Hecke grössencharacter; Hecke -function},
language = {eng},
number = {5},
pages = {669-683},
publisher = {Elsevier},
title = {A subconvexity bound for Hecke L-functions},
url = {http://eudml.org/doc/82554},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Fouvry, Étienne
AU - Iwaniec, Henryk
TI - A subconvexity bound for Hecke L-functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 5
SP - 669
EP - 683
LA - eng
KW - approximate functional equation; imaginary quadratic field; Hecke grössencharacter; Hecke -function
UR - http://eudml.org/doc/82554
ER -
References
top- [1] Burgess D.A., On character sums and L-series, I, Proc. London Math. Soc.12 (3) (1962) 193-206. Zbl0106.04004MR132733
- [2] Conrey J.B, Iwaniec H., The cubic moment of central values of automorphic L-functions, Ann. of Math.151 (2000) 1175-1216. Zbl0973.11056MR1779567
- [3] Duke W., Friedlander J., Iwaniec H., Bounds for automorphic L-functions. II, Invent. Math.115 (1994) 209-217. Zbl0812.11032MR1258904
- [4] Friedlander J., Bounds for L-functions, in: Proceedings of the International Congress of Mathematicians, (Zürich, 1994), Birkhäuser Verlag, 1995, pp. 363-373. Zbl0843.11040MR1403937
- [5] Hecke E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z.6 (1920) 11-51. MR1544392JFM47.0152.01
- [6] Rodriguez Villegas F., On the square root of special values of certain L-series, Invent. Math.106 (1991) 549-573. Zbl0773.11034MR1134483
- [7] Rodriguez Villegas F., Zagier D., Square roots of central values of L-series, in: Gouvea F., Yui N. (Eds.), Advances in Number Theory, Proceedings of the Third Conference of the Canadian Number Theory Association, Kingston, Ontario, (1991), Clarendon Press, Oxford, 1993, pp. 81-99. Zbl0791.11060MR1368412
- [8] Rohrlich D., The non-vanishing of certain Hecke L-functions at the center of the critical strip, Duke Math. J.47 (1980) 223-231. Zbl0434.12007MR563377
- [9] Schmidt W., Equations over Finite Fields: An Elementary Approach, Lect. Notes in Math., 534, Springer-Verlag, 1976. Zbl0329.12001MR429733
- [10] Siegel C.L., Über die Classenzahl quadratischer Zahlkörper, Acta Arith.1 (1936) 83-86. Zbl61.0170.02JFM61.0170.02
- [11] Weyl H., Zur Abschätzung von ζ(1+ti), Math. Z.10 (1921) 88-101. JFM48.0346.01
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.