Familles de fonctions L de formes automorphes et applications

Philippe Michel[1]

  • [1] Université Montpellier II, Mathématiques, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex (France)

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 275-307
  • ISSN: 1246-7405

Abstract

top
One of the important concept that has emerged these last years in the analytic theory of L functions, is the concept of families. For instance, families of L functions occur naturally in Katz/Sarnak’s probabilistic model of random matrices whose goal is to predict the distribution of zeros of L functions. The study of L functions within families occurs also in the (unconditional) resolution of several problems having some deep arithmetical meaning : the question of non-vanishing of special values of L functions or the problem of giving non-trivial upper bounds for these special values (the subconvexity problem). In this paper, we review the analytic method involved in solution of some of these problems and give several applications.

How to cite

top

Michel, Philippe. "Familles de fonctions $L$ de formes automorphes et applications." Journal de théorie des nombres de Bordeaux 15.1 (2003): 275-307. <http://eudml.org/doc/249115>.

@article{Michel2003,
abstract = {Une notion importante qui a émergé de la théorie analytique des fonctions $L$ ces dernières années, est celle de famille. Par exemple les familles de fonctions $L$ interviennent naturellement dans le modèle probabiliste des matrices aléatoires de Katz/Sarnak qui vise à prédire la répartition des zéros des fonctions $L$. L’analyse des fonctions $L$ en famille intervient également dans la résolution (inconditionnelle) de divers problèmes ayant une signification arithmétique profonde, tel que le problème de montrer la non-annulation de valeur spéciales de fonctions $L$ ou encore celui de borner non-trivialement ces valeurs (le problème de convexité). Dans cet article, nous passons en revue les techniques analytiques mises en jeu pour résoudre ces questions et décrivons plusieurs applications de nature arithmétique.},
affiliation = {Université Montpellier II, Mathématiques, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex (France)},
author = {Michel, Philippe},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {family of -functions; mollification; amplification; breaking convexity},
language = {fre},
number = {1},
pages = {275-307},
publisher = {Université Bordeaux I},
title = {Familles de fonctions $L$ de formes automorphes et applications},
url = {http://eudml.org/doc/249115},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Michel, Philippe
TI - Familles de fonctions $L$ de formes automorphes et applications
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 275
EP - 307
AB - Une notion importante qui a émergé de la théorie analytique des fonctions $L$ ces dernières années, est celle de famille. Par exemple les familles de fonctions $L$ interviennent naturellement dans le modèle probabiliste des matrices aléatoires de Katz/Sarnak qui vise à prédire la répartition des zéros des fonctions $L$. L’analyse des fonctions $L$ en famille intervient également dans la résolution (inconditionnelle) de divers problèmes ayant une signification arithmétique profonde, tel que le problème de montrer la non-annulation de valeur spéciales de fonctions $L$ ou encore celui de borner non-trivialement ces valeurs (le problème de convexité). Dans cet article, nous passons en revue les techniques analytiques mises en jeu pour résoudre ces questions et décrivons plusieurs applications de nature arithmétique.
LA - fre
KW - family of -functions; mollification; amplification; breaking convexity
UR - http://eudml.org/doc/249115
ER -

References

top
  1. [BD1] M. Bertolini, H. Darmon, Heegner points of Mumford-Tate curves. Invent. Math.126 (1996), 413-456. Zbl0882.11034MR1419003
  2. [BD2] M. Bertolini, H. Darmon, A rigid analytic Gross-Zagier formula and arithmetic applications, with an appendix by Bas Edixhoven. Ann. of Math.146 (1997), 111-147. Zbl1029.11027MR1469318
  3. [Bu] D.A. BURGESS On charactersums and L-series. Proc. London Math. Soc.12 (1962), 193-206. Zbl0106.04004MR132733
  4. [Co] J. Cogdell, On sums of three squares. J. Théor. Nombres Bordeaux15 (2003), 33-44. Zbl1050.11043MR2018999
  5. [CPSS] J. Cogdell, I.I. Piatetskii-Shapiro, P. Sarnak. En préparation. 
  6. [Cor] C. Cornut, Mazur's conjecture on higher Heegner points. Invent. Math.148 (2002), 495-523. Zbl1111.11029MR1908058
  7. [CI] B. Conrey, H. Iwaniec, The cubic moment of central values of automorphic L-functions. Annals of Math.151 (2000), 1175-1216. Zbl0973.11056MR1779567
  8. [CS] J.B. Conrey, K. Soundararajan, Real zeros of quadratic Dirichlet L-functions. Invent. Math.150 (2002), 1-44. Zbl1042.11053MR1930880
  9. [De1] P. Deligne, La conjecture de Weil I. Publ. Math. IHES43 (1974), 273-308. Zbl0287.14001MR340258
  10. [De2] P. Deligne, La conjecture de Weil II. Publ. Math. IHES52 (1981), 313-428. Zbl0456.14014MR601520
  11. [Du] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math.92 (1988), 73-90. Zbl0628.10029MR931205
  12. [DFI1] W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic L-functions. Invent. Math.112 (1993), 1-8. Zbl0765.11038MR1207474
  13. [DFI2] W. Duke, J. Friedlander, H. Iwaniec, A quadratic divisor problem. Invent. Math.115 (1994), 209-217. Zbl0791.11049MR1258903
  14. [DFI3] W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic L-functions, II. Invent. Math.115 (1994), 219-239. Zbl0812.11032MR1258904
  15. [DFI4] W. Duke, J. Friedlander, H. Iwaniec, Class group L-functions. Duke Math. J.79 (1995), 1-56. Zbl0838.11058MR1340293
  16. [DFI5] W. Duke, J. Friedlander, H. Iwaniec, Bilinear forms with Kloosterman fractions. Invent. Math.128 (1997), 23-43. Zbl0873.11050MR1437494
  17. [DFI6] W. Duke, J. Friedlander, H. Iwaniec, Representations by the determinant and mean values of L-functions. Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), 109-115, London Math. Soc. Lecture Note Ser., 237, Cambridge Univ. Press, Cambridge, 1997. Zbl0927.11046MR1635738
  18. [DFI7] W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic L-functions, III. Invent. Math.143 (2001), 221-248. Zbl1163.11325MR1835388
  19. [DFI8] W. Duke, J. Friedlander, H. Iwaniec, The subconvexity problem for Artin L functions. Invent. Math.149 (2002), 489-577. Zbl1056.11072MR1923476
  20. [FoI] É. Fouvry, H. Iwaniec, A subconvexity bound for Hecke L-functions. Ann. Sci. École Norm. Sup. (4) 34 (2001), 669-683. Zbl0995.11062MR1862023
  21. [Fr] J.B. Friedlander, Bounds for L-functions. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 363-373, Birkhäuser, Basel, 1995. Zbl0843.11040MR1403937
  22. [Ga] P. Garrett, Decomposition of Eisenstein series; Rankin triple products. Annals of Math.125 (1987), 209-235. Zbl0625.10020MR881269
  23. [GJ] S. Gelbart, H. Jacquet, A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4) 11 (1978), 471-542. Zbl0406.10022MR533066
  24. [GoJ] R. Godement, H. Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260, 1972. Zbl0244.12011MR342495
  25. [G] B. Gross, Heights and the special values of L-series. Number theory (Montreal, Que., 1985), 115-187, CMS Conf. Proc. 7, Amer. Math. Soc., Providence, RI, 1987. Zbl0623.10019MR894322
  26. [GZ] B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math.84 (1986), 225-320. Zbl0608.14019MR833192
  27. [HK] M. Harris, S. Kudla, the central value of a triple product L fuunction. Annals of Math.133 (1991), 605-672. Zbl0731.11031MR1109355
  28. [HM] D.R. Heath-Brown, P. Michel, Exponential decays for the frequency of the analytic rank of Automorphic L-functions. Duke Math. Journal102 (2000), 475-484. Zbl1166.11326MR1756106
  29. [HL] J. Hoffstein, P. Lockhart, Coefficients of Maass forms and the Siegel zero. With an appendix by Dorian Goldfield, Hoffstein and Daniel Lieman. Ann. of Math. (2) 140 (1994), 161-181. Zbl0814.11032MR1289494
  30. [HR] J. Hoffstein, D. Ramakrishnan, Siegel zeros and cusp forms. Internat. Math. Res. Notices1995, no. 6, 279-308. Zbl0847.11043MR1344349
  31. [Iw1] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight. Invent. Math.87 (1987), 385-401. Zbl0606.10017MR870736
  32. [Iw2] H. Iwaniec, The spectral growth of automorphic L functions. J. Reine Angew. Math.428 (1992), 139-159. Zbl0746.11024MR1166510
  33. [IS1] H. Iwaniec, P. Sarnak, The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros. Israel J. Math.120 (2000), part A, 155-177. Zbl0992.11037MR1815374
  34. [IS2] H. Iwaniec, P. Sarnak, Perspectives in the Analytic Theory of L functions. GAFA2000 (Tel Aviv, 1999). Geom. Funct. Anal.2000, Special Volume, Part II, 705-741. Zbl0996.11036MR1826269
  35. [Iv] A. Ivić, On sums of Hecke series in short intervals. J. Théor. Nombres Bordeaux13 (2001), 453-468. Zbl0994.11020MR1879668
  36. [JS] H. Jacquet, J.A. Shalika, On Euler products and the classification of automorphic representations. I. Amer. J. Math.103 (1981), 499-558. Zbl0473.12008MR618323
  37. [JPPS] H. Jacquet, I.I. Piatetskii-Shapiro, J.A. Shalika, Rankin-Selberg convolutions. Amer. J. Math.105 (1983), 367-464. Zbl0525.22018MR701565
  38. [KaSa1] N.M. Katz, P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, 45. American Mathematical Society, Providence, RI, 1999. Zbl0958.11004MR1659828
  39. [KaSa2] N.M. Katz, P. Sarnak, Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. (N.S.) 36 (1999), 1-26. Zbl0921.11047MR1640151
  40. [Ki] H. Kim, Functoriality for the exterior square of GL4 and symmetric fourth of GL2. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. J. Amer. Math. Soc.16 (2003), 139-183. Zbl1018.11024MR1937203
  41. [KiSh] H. Kim, F. Shahidi, Cuspidality of symmetric powers with applications. Duke Math. J.112 (2002), 177-197. Zbl1074.11027MR1890650
  42. [Ko] V. Kolyvagin, Euler Systems, The Grothendieck festschrift. Prog. in Math. Boston, Birkhauser, 1990. Zbl0742.14017MR1106906
  43. [KM1] E. Kowalski, P. Michel, The analytic rank of Jo(q) and zeros of automorphic L-functions. Duke Math. Journal100 (1999), 503-542. Zbl1161.11359MR1719730
  44. [KM2] E. Kowalski, P. Michel, A lower bound for the rank of J0(q). Acta Arith.94 (2000), 303-343. Zbl0973.11065MR1779946
  45. [KM3] E. Kowalski, P. Michel, Deux Théorèmes de non-annulation pour les valeurs spéciales de fonctions L. Manuscripta Math.104 (2001), 1-19. Zbl0998.11027MR1820726
  46. [KM4] E. Kowalski, P. Michel, Appendice à "Sur la nature non cyclotomique des points d'ordre fini des courbes elliptiques"de L. Merel. Duke Math. J.110 (2001), 110-119. Zbl1020.11041MR1861089
  47. [KMV1] E. Kowalski, P. Michel, J. Vanderkam, Non-vanishing of higher derivatives of automorphic L-functions. J. Reine Angew. Math.526 (2000), 1-34. Zbl1020.11033MR1778299
  48. [KMV2] E. Kowalski, P. Michel, J. Vanderkam, Mollification of the fourth moment of automorphic L-functions and arithmetic applications. Invent. Math.142 (2000), 95-151. Zbl1054.11026MR1784797
  49. [KMV3] E. Kowalski, P. Michel, J. Vanderkam, Rankin-Selberg L-functions in the level aspect. Duke Math. J.114 (2002), 123-191. Zbl1035.11018MR1915038
  50. [La] G. Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil. Inst. Hautes Études Sci. Publ. Math. No. 65 (1987), 131-210. Zbl0641.14009MR908218
  51. [Lu] W. Luo, On the nonvanishing of Rankin-Selberg L-functions. Duke Math. J.69 (1993), 411-425. Zbl0789.11032MR1203232
  52. [Me] L. Merel, Sur la nature non-cyclotomique des points d'ordre fini des courbes elliptiques. Duke Math. J.110 (2001), 81-119. Zbl1020.11041MR1861089
  53. [Mi1] P. Michel, Répartition des zéros des fonctions L et matrices aléatoires. Exposé Bourbaki887, Mars 2001. Zbl1075.11056
  54. [Mi2] P. Michel, the subconvexity problem for Rankin-Selberg L functions with nebentypus and the equidistribution of Heegner points. Annals of Math, à paraître. Zbl1068.11033
  55. [MV] P. Michel, J. Vanderkam, Simultaneous non-vanishing of twists of automorphic L-functions. Compositio Math.134 (2002), 135-191.. Zbl1050.11054MR1934306
  56. [Mo] G. Molteni, Upper and lower bounds at s = 1 for certain Dirichlet series with Euler product. Duke Math. J.111 (2002), 133-158. Zbl1100.11028MR1876443
  57. [PS] R.S. Phillips, P. Sarnak, On cusp forms for co-finite subgroups of PSL(2, R). Invent. Math.80 (1985), 339-364. Zbl0558.10017MR788414
  58. [Ra] D. Ramakrishnan, modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Annals of Math.152 (2000), 45-111. Zbl0989.11023MR1792292
  59. [Ru] Z. Rudnick, Notes on zeros of modular forms, preprint, 1999. 
  60. [RS] Z. Rudnick, P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys.161 (1994), 195-213. Zbl0836.58043MR1266075
  61. [Ro] D. Rohrlich, Elliptic curves and the Weil-Deligne group. Elliptic curves and related topics, 125-157, CRM Proc. Lecture Notes, 4, Amer. Math. Soc., Providence, RI, 1994. Zbl0852.14008MR1260960
  62. [Sa1] P. Sarnak, Integrals of products of eigenfunctions. Internat. Math. Res. Notices1994, no. 6, 251-260. Zbl0833.11020MR1277052
  63. [Sa2] P. Sarnak, Estimates for Rankin-Selberg L-functions and Quantum Unique Ergodicity. J. Funct. Anal.184 (2001), 419-453. Zbl1006.11022MR1851004
  64. [Sc] A. Scholl, An introduction to Kato's Euler systems, Galois representations in arithmetic algebraic geometry (Durham, 1996), 379-460, London Math. Soc. Lecture Note Ser., 254, Cambridge Univ. Press, Cambridge, 1998. Zbl0952.11015MR1696501
  65. [Se] A. Selberg, Collected papers. Vol. I, II, (With a foreword by K. Chandrasekharan). Springer-Verlag, Berlin, 1989. Zbl0675.10001MR1117906
  66. [VI] J. Vanderkam, The rank of quotients of Jo(N). Duke Math. J.97 (1999), 545-577. Zbl1013.11030MR1682989
  67. [V2] J. Vanderkam, Linear independence of Hecke operators in the homology of X0(N). J. London Math. Soc.61 (2000), 349-358. Zbl0963.11023MR1760688
  68. [Va] Vatsal, Uniform distribution of Heegner points, preprint, 2001. MR1892842
  69. [Wa1] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. (9) 60 (1981), 375-484. Zbl0431.10015MR646366
  70. [Wat] T. Watson, Rankin triple products and quantum chaos. Thesis, Princeton Univ., Princeton, NJ, 2000. 
  71. [We] H. Weyl, Zur Abschtzung von ζ(1 + ti). Math. Z.10 (1921), 88-101. JFM48.0346.01
  72. [Zh1] S. Zhang, Heights of Heegner points on Shimura curves. Ann. of Math.153 (2001), 27-147. Zbl1036.11029MR1826411
  73. [Zh2] S. Zhang, Gross-Zagier formula for GL(2). Asian J. Math.5 (2001), 183-290. Zbl1111.11030MR1868935

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.