Plane affine geometry and Anosov flows
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 6, page 871-889
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBarbot, Thierry. "Plane affine geometry and Anosov flows." Annales scientifiques de l'École Normale Supérieure 34.6 (2001): 871-889. <http://eudml.org/doc/82560>.
@article{Barbot2001,
author = {Barbot, Thierry},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {871-889},
publisher = {Elsevier},
title = {Plane affine geometry and Anosov flows},
url = {http://eudml.org/doc/82560},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Barbot, Thierry
TI - Plane affine geometry and Anosov flows
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 6
SP - 871
EP - 889
LA - eng
UR - http://eudml.org/doc/82560
ER -
References
top- [1] Anosov D.V., Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov.90 (1967). Zbl0176.19101MR224110
- [2] Barbot T., Caractérisation des flots d'Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems15 (1995) 247-270. Zbl0826.58025MR1332403
- [3] Barbot T., Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble)46 (1996) 1451-1517. Zbl0861.58028MR1427133
- [4] Barbot T., Generalizations of the Bonatti–Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom.6 (1998) 749-798. Zbl0916.58033MR1652255
- [5] Bonatti C., Langevin R., Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems14 (1994) 633-643. Zbl0826.58026MR1304136
- [6] Bowen R., Marcus B., Unique ergodicity for horocycle foliations, Israel J. Math.26 (1) (1977) 43-67. Zbl0346.58009MR451307
- [7] Buekenhout F., Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, Edited by F. Buekenhout, 1420 pp. Zbl0821.00012MR1360715
- [8] Fenley S.R., Anosov flows in 3-manifolds, Ann. of Math. (2)139 (1) (1994) 79-115. Zbl0796.58039MR1259365
- [9] Fenley S.R., The structure of branching in Anosov flows of 3-manifolds, Comment. Math. Helv.73 (2) (1998) 259-297. Zbl0999.37008MR1611703
- [10] Foulon P., private communication.
- [11] Franks J., Anosov diffeomorphisms, in: Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XIV, American Mathematical Society, Providence, RI, 1970, pp. 61-93. Zbl0207.54304MR271990
- [12] Franks J., Williams B., Anomalous Anosov flows, in: Lectures Notes in Math., 819, 1980, pp. 158-174. Zbl0463.58021MR591182
- [13] Fried D., Transitive Anosov flows and pseudo-Anosov maps, Topology22 (1983) 299-303. Zbl0516.58035MR710103
- [14] Ghys E., Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory Dynam. Systems4 (1) (1984) 67-80. Zbl0527.58030MR758894
- [15] Ghys E., Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4)20 (2) (1987) 251-270. Zbl0663.58025MR911758
- [16] Ghys E., Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier (Grenoble)42 (1–2) (1992) 209-247. Zbl0759.58036MR1162561
- [17] Ghys E., Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math.78 (1993) 163-185. Zbl0812.58066MR1259430
- [18] Goodman S., Dehn surgery on Anosov flows, in: Lectures Notes in Math., 1007, 1983, pp. 300-307. Zbl0532.58021MR1691596
- [19] Handel M., Thurston W., Anosov flows on new three manifolds, Invent. Math.59 (1980) 95-103. Zbl0435.58019MR577356
- [20] Hasselblatt B., Katok A., Introduction to the Modern Theory of Dynamical Systems (With a supplementary chapter by A. Katok and L. Mendoza), Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. Zbl0878.58020MR1326374
- [21] Hasselblatt B., Wilkinson A., Prevalence of non-Lipschitz Anosov foliations, Ergodic Theory Dynam. Systems19 (1998) 643-656. Zbl1069.37031MR1695913
- [22] Hirsch M.W., Pugh C., Stable manifolds and hyperbolic sets, in: Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XIV, American Mathematical Society, Providence, RI, 1970, pp. 133-163. Zbl0215.53001MR271991
- [23] Hurder S., Katok A., Differentiability, rigidity and Godbillon–Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math.72 (1990) 5-61. Zbl0725.58034MR1087392
- [24] Margulis G.A., Certain measures that are connected with U-flows on compact manifolds, Functional Anal. Appl.4 (1970) 55-67. Zbl0245.58003MR272984
- [25] Newhouse S.E., On codimension one Anosov diffeomorphisms, Amer. J. Math.92 (1970) 761-770. Zbl0204.56901MR277004
- [26] Palmeira C.F.B., Open manifolds foliated by planes, Ann. Math.107 (1978) 109-131. Zbl0382.57010MR501018
- [27] Plante J.F., Anosov flows, Amer. J. Math.94 (1972) 729-754. Zbl0257.58007MR377930
- [28] Plante J.F., Anosov flows, transversely affine foliations, and a conjecture of Verjovsky, J. London Math. Soc. (2)23 (2) (1981) 359-362. Zbl0465.58020MR609116
- [29] Plante J.F., Thurston W., Anosov flows and the fundamental group, Topology11 (1972) 147-150. Zbl0246.58014MR295389
- [30] Salzmann H., Betten D., Grundhöfer T., Hähl H., Löwen R., Stroppel M., Compact Projective Planes, De Gruyter Expositions in Mathematics, 21, Walter de Gruyter, Berlin, 1995. Zbl0851.51003MR1384300
- [31] Simić S., Codimension one Anosov flows and a conjecture of Verjovsky, Ergodic Theory Dynam. Systems17 (1997) 1221-1231. Zbl0903.58026MR1477039
- [32] Solodov V.V., The universal cover of Anosov flows, preprint, 1992.
- [33] Thurston W., Three-manifolds, foliations and circles, I, preprint, 1997, math.gt/9712268. MR380828
- [34] Verjovsky A., Codimension one Anosov flows, Bol. Soc. Mexicana (2)19 (2) (1974) 49-77. Zbl0323.58014MR431281
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.