Plane affine geometry and Anosov flows

Thierry Barbot

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 6, page 871-889
  • ISSN: 0012-9593

How to cite

top

Barbot, Thierry. "Plane affine geometry and Anosov flows." Annales scientifiques de l'École Normale Supérieure 34.6 (2001): 871-889. <http://eudml.org/doc/82560>.

@article{Barbot2001,
author = {Barbot, Thierry},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {871-889},
publisher = {Elsevier},
title = {Plane affine geometry and Anosov flows},
url = {http://eudml.org/doc/82560},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Barbot, Thierry
TI - Plane affine geometry and Anosov flows
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 6
SP - 871
EP - 889
LA - eng
UR - http://eudml.org/doc/82560
ER -

References

top
  1. [1] Anosov D.V., Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov.90 (1967). Zbl0176.19101MR224110
  2. [2] Barbot T., Caractérisation des flots d'Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems15 (1995) 247-270. Zbl0826.58025MR1332403
  3. [3] Barbot T., Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble)46 (1996) 1451-1517. Zbl0861.58028MR1427133
  4. [4] Barbot T., Generalizations of the Bonatti–Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom.6 (1998) 749-798. Zbl0916.58033MR1652255
  5. [5] Bonatti C., Langevin R., Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems14 (1994) 633-643. Zbl0826.58026MR1304136
  6. [6] Bowen R., Marcus B., Unique ergodicity for horocycle foliations, Israel J. Math.26 (1) (1977) 43-67. Zbl0346.58009MR451307
  7. [7] Buekenhout F., Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, Edited by F. Buekenhout, 1420 pp. Zbl0821.00012MR1360715
  8. [8] Fenley S.R., Anosov flows in 3-manifolds, Ann. of Math. (2)139 (1) (1994) 79-115. Zbl0796.58039MR1259365
  9. [9] Fenley S.R., The structure of branching in Anosov flows of 3-manifolds, Comment. Math. Helv.73 (2) (1998) 259-297. Zbl0999.37008MR1611703
  10. [10] Foulon P., private communication. 
  11. [11] Franks J., Anosov diffeomorphisms, in: Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XIV, American Mathematical Society, Providence, RI, 1970, pp. 61-93. Zbl0207.54304MR271990
  12. [12] Franks J., Williams B., Anomalous Anosov flows, in: Lectures Notes in Math., 819, 1980, pp. 158-174. Zbl0463.58021MR591182
  13. [13] Fried D., Transitive Anosov flows and pseudo-Anosov maps, Topology22 (1983) 299-303. Zbl0516.58035MR710103
  14. [14] Ghys E., Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory Dynam. Systems4 (1) (1984) 67-80. Zbl0527.58030MR758894
  15. [15] Ghys E., Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4)20 (2) (1987) 251-270. Zbl0663.58025MR911758
  16. [16] Ghys E., Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier (Grenoble)42 (1–2) (1992) 209-247. Zbl0759.58036MR1162561
  17. [17] Ghys E., Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math.78 (1993) 163-185. Zbl0812.58066MR1259430
  18. [18] Goodman S., Dehn surgery on Anosov flows, in: Lectures Notes in Math., 1007, 1983, pp. 300-307. Zbl0532.58021MR1691596
  19. [19] Handel M., Thurston W., Anosov flows on new three manifolds, Invent. Math.59 (1980) 95-103. Zbl0435.58019MR577356
  20. [20] Hasselblatt B., Katok A., Introduction to the Modern Theory of Dynamical Systems (With a supplementary chapter by A. Katok and L. Mendoza), Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. Zbl0878.58020MR1326374
  21. [21] Hasselblatt B., Wilkinson A., Prevalence of non-Lipschitz Anosov foliations, Ergodic Theory Dynam. Systems19 (1998) 643-656. Zbl1069.37031MR1695913
  22. [22] Hirsch M.W., Pugh C., Stable manifolds and hyperbolic sets, in: Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XIV, American Mathematical Society, Providence, RI, 1970, pp. 133-163. Zbl0215.53001MR271991
  23. [23] Hurder S., Katok A., Differentiability, rigidity and Godbillon–Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math.72 (1990) 5-61. Zbl0725.58034MR1087392
  24. [24] Margulis G.A., Certain measures that are connected with U-flows on compact manifolds, Functional Anal. Appl.4 (1970) 55-67. Zbl0245.58003MR272984
  25. [25] Newhouse S.E., On codimension one Anosov diffeomorphisms, Amer. J. Math.92 (1970) 761-770. Zbl0204.56901MR277004
  26. [26] Palmeira C.F.B., Open manifolds foliated by planes, Ann. Math.107 (1978) 109-131. Zbl0382.57010MR501018
  27. [27] Plante J.F., Anosov flows, Amer. J. Math.94 (1972) 729-754. Zbl0257.58007MR377930
  28. [28] Plante J.F., Anosov flows, transversely affine foliations, and a conjecture of Verjovsky, J. London Math. Soc. (2)23 (2) (1981) 359-362. Zbl0465.58020MR609116
  29. [29] Plante J.F., Thurston W., Anosov flows and the fundamental group, Topology11 (1972) 147-150. Zbl0246.58014MR295389
  30. [30] Salzmann H., Betten D., Grundhöfer T., Hähl H., Löwen R., Stroppel M., Compact Projective Planes, De Gruyter Expositions in Mathematics, 21, Walter de Gruyter, Berlin, 1995. Zbl0851.51003MR1384300
  31. [31] Simić S., Codimension one Anosov flows and a conjecture of Verjovsky, Ergodic Theory Dynam. Systems17 (1997) 1221-1231. Zbl0903.58026MR1477039
  32. [32] Solodov V.V., The universal cover of Anosov flows, preprint, 1992. 
  33. [33] Thurston W., Three-manifolds, foliations and circles, I, preprint, 1997, math.gt/9712268. MR380828
  34. [34] Verjovsky A., Codimension one Anosov flows, Bol. Soc. Mexicana (2)19 (2) (1974) 49-77. Zbl0323.58014MR431281

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.