Finite quantum groups over abelian groups of prime exponent

Nicolás Andruskiewitsch; Hans-Jürgen Schneider[1]

  • [1] Universität München, Mathematisches Institut, Theresienstr. 39, 80333 Munich (Allemagne)

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 1, page 1-26
  • ISSN: 0012-9593

How to cite

top

Andruskiewitsch, Nicolás, and Schneider, Hans-Jürgen. "Finite quantum groups over abelian groups of prime exponent." Annales scientifiques de l'École Normale Supérieure 35.1 (2002): 1-26. <http://eudml.org/doc/82564>.

@article{Andruskiewitsch2002,
affiliation = {Universität München, Mathematisches Institut, Theresienstr. 39, 80333 Munich (Allemagne)},
author = {Andruskiewitsch, Nicolás, Schneider, Hans-Jürgen},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {pointed Hopf algebras; Dynkin diagrams; group-like elements; skew-primitive elements},
language = {eng},
number = {1},
pages = {1-26},
publisher = {Elsevier},
title = {Finite quantum groups over abelian groups of prime exponent},
url = {http://eudml.org/doc/82564},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Andruskiewitsch, Nicolás
AU - Schneider, Hans-Jürgen
TI - Finite quantum groups over abelian groups of prime exponent
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 1
SP - 1
EP - 26
LA - eng
KW - pointed Hopf algebras; Dynkin diagrams; group-like elements; skew-primitive elements
UR - http://eudml.org/doc/82564
ER -

References

top
  1. [1] Andersen H.H., Jantzen J., Soergel W., Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: Independence of p, Astérisque, 220, 1994. Zbl0802.17009MR1272539
  2. [2] Andruskiewitsch N., Dăscălescu S, On quantum groups at −1, Algebr. Represent. Theory, to appear. Zbl1136.16032
  3. [3] Andruskiewitsch N., Graña M., Braided Hopf algebras over non-abelian groups, Bol. Acad. Ciencias (Córdoba)63 (1999) 45-78, available at www.mate.uncor.edu/andrus/articulos.html. Zbl1007.17010MR1714540
  4. [4] Andruskiewitsch N., Schneider H.-J., Lifting of quantum linear spaces and pointed Hopf algebras of order p3, J. Algebra209 (1998) 658-691. Zbl0919.16027MR1659895
  5. [5] Andruskiewitsch N., Schneider H.-J., Finite quantum groups and Cartan matrices, Adv. in Math.154 (2000) 1-45. Zbl1007.16027MR1780094
  6. [6] Andruskiewitsch N., Schneider H.-J., Lifting of Nichols algebras of type A2 and pointed Hopf algebras of order p4, in: Caenepeel S. (Ed.), Proceedings of the Colloquium in Brussels 1998, Hopf Algebras and Quantum Groups, Marcel Dekker, 2000, pp. 1-18. Zbl1020.16022MR1763604
  7. [7] Andruskiewitsch N., Schneider H.-J., Pointed Hopf algebras, in: New Directions in Hopf Algebras, MSRI Series Cambridge Univ. Press, to appear. Zbl1011.16025MR1913436
  8. [8] Beattie M., Dăscălescu S., Grünenfelder L., On the number of types of finite-dimensional Hopf algebras, Inventiones Math.136 (1999) 1-7. Zbl0922.16021MR1681117
  9. [9] Beattie M., Dăscălescu S., Raianu S., Lifting of Nichols algebras of type B2, Preprint, 2001. Zbl1054.16027
  10. [10] Caenepeel S., Dăscălescu S., Pointed Hopf algebras of dimension p3, J. Algebra209 (1998) 622-634. Zbl0917.16016MR1659887
  11. [11] Caenepeel S., Dăscălescu S., Raianu S., Classifying pointed Hopf algebras of dimension 16, Comm. Algebra28 (2000) 541-568. Zbl0952.16030MR1736746
  12. [12] de Concini C., Procesi C., Quantum groups, in: D-modules, Representation Theory and Quantum Groups, Lecture Notes in Maths., 1565, Springer-Verlag, 1993, pp. 31-140. Zbl0795.17005MR1288995
  13. [13] Didt D., Linkable Dynkin diagrams, Preprint, 2001. MR1935506
  14. [14] Doi Y., Takeuchi M., Multiplication alteration by two-cocycles. The quantum version, Comm. Algebra22 (14) (1994) 5715-5732. Zbl0821.16038MR1298746
  15. [15] Drinfeld V.G., Quasi-Hopf algebras, Leningrad Math. J.1 (1990) 1419-1457. MR1047964
  16. [16] Gelaki S., On pointed Hopf algebras and Kaplansky's tenth conjecture, J. Algebra209 (1998) 635-657. Zbl0922.16023MR1659891
  17. [17] Graña M., Pointed Hopf algebras of dimension 32, Comm. Algebra28 (2000) 2935-2976. Zbl0952.16036MR1757439
  18. [18] Graña M., On Pointed Hopf algebras of dimension p5, Glasgow Math. J.42 (2000) 405-419. Zbl0970.16016MR1793809
  19. [19] Graña M., On Nichols algebras of low dimension, Contemp. Math.267 (2000) 111-134. Zbl0974.16031MR1800709
  20. [20] Kac V., Infinite Dimensional Lie Algebras, Cambridge Univ. Press, 1995. Zbl0716.17022MR1104219
  21. [21] Lusztig G., Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc.3, 257–296. Zbl0695.16006MR1013053
  22. [22] Lusztig G., Quantum groups at roots of 1, Geom. Dedicata35 (1990) 89-114. Zbl0714.17013MR1066560
  23. [23] Lusztig G., Introduction to Quantum Groups, Birkhäuser, 1993. Zbl0788.17010MR1227098
  24. [24] Majid S., Crossed products by braided groups and bosonization, J. Algebra163 (1994) 165-190. Zbl0807.16036MR1257312
  25. [25] Masuoka A., Defending the negated Kaplansky conjecture, Proc. Amer. Math. Soc.129 (2001) 3185-3192. Zbl0985.16026MR1844991
  26. [26] Montgomery S., Hopf Algebras and Their Actions on Rings, CBMS Lecture Notes, 82, American Mathematical Society, 1993. Zbl0793.16029MR1243637
  27. [27] Müller E., Some topics on Frobenius–Lusztig kernels, I, J. Algebra206 (1998) 624-658. Zbl0948.17010MR1637096
  28. [28] Musson I., Finite quantum groups and pointed Hopf algebras, Preprint, 1999. MR1903966
  29. [29] Nichols W.D., Bialgebras of type one, Comm. Algebra6 (1978) 1521-1552. Zbl0408.16007MR506406
  30. [30] Nichols W.D., Zoeller M.B., A Hopf algebra freeness theorem, Amer. J. Math.111 (1989) 381-385. Zbl0672.16006MR987762
  31. [31] Radford D., Hopf algebras with projection, J. Algebra92 (1985) 322-347. Zbl0549.16003MR778452
  32. [32] Ringel C., PBW-bases of quantum groups, J. Reine Angew. Math.470 (1996) 51-88. Zbl0840.17010MR1370206
  33. [33] Rosso M., Groupes quantiques et algèbres de battage quantiques, C.R.A.S. (Paris)320 (1995) 145-148. Zbl0929.17005MR1320345
  34. [34] Rosso M., Quantum groups and quantum shuffles, Inventiones Math.133 (1998) 399-416. Zbl0912.17005MR1632802
  35. [35] Schauenburg P., A characterization of the Borel-like subalgebras of quantum enveloping algebras, Comm. Algebra24 (1996) 2811-2823. Zbl0856.17017MR1396857
  36. [36] Stefan D., van Oystaeyen F., Hochschild cohomology and coradical filtration of pointed Hopf algebras, J. Algebra210 (1998) 535-556. Zbl0918.16030MR1662284
  37. [37] Woronowicz S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys.122 (1989) 125-170. Zbl0751.58042MR994499

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.