Homotopy theory of Hopf Galois extensions
Christian Kassel[1]; Hans-Jürgen Schneider[2]
- [1] Université Louis Pasteur, Institut de Recherche Mathématique Avancée, CNRS, 7 rue René Descartes, 67084 Strasbourg (France)
- [2] Universität München, Mathematisches Institut, Theresienstr. 39, 80333 Munich (Allemagne)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 7, page 2521-2550
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKassel, Christian, and Schneider, Hans-Jürgen. "Homotopy theory of Hopf Galois extensions." Annales de l'institut Fourier 55.7 (2005): 2521-2550. <http://eudml.org/doc/116262>.
@article{Kassel2005,
abstract = {We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all $H$-Galois extensions up to homotopy equivalence in the case when $H$ is a Drinfeld-Jimbo quantum group.},
affiliation = {Université Louis Pasteur, Institut de Recherche Mathématique Avancée, CNRS, 7 rue René Descartes, 67084 Strasbourg (France); Universität München, Mathematisches Institut, Theresienstr. 39, 80333 Munich (Allemagne)},
author = {Kassel, Christian, Schneider, Hans-Jürgen},
journal = {Annales de l'institut Fourier},
keywords = {Galois extension; Hopf algebra; quantum group; homotopy; noncommutative geometry; principal fibre bundle; Hopf-Galois extensions; homotopy equivalences; Hopf algebras; quantum groups},
language = {eng},
number = {7},
pages = {2521-2550},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homotopy theory of Hopf Galois extensions},
url = {http://eudml.org/doc/116262},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Kassel, Christian
AU - Schneider, Hans-Jürgen
TI - Homotopy theory of Hopf Galois extensions
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2521
EP - 2550
AB - We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all $H$-Galois extensions up to homotopy equivalence in the case when $H$ is a Drinfeld-Jimbo quantum group.
LA - eng
KW - Galois extension; Hopf algebra; quantum group; homotopy; noncommutative geometry; principal fibre bundle; Hopf-Galois extensions; homotopy equivalences; Hopf algebras; quantum groups
UR - http://eudml.org/doc/116262
ER -
References
top- H.H. Andersen, J. Jantzen, W. Soergel, Representations of quantum groups at a -th root of unity and of semisimple groups in characteristic : Independence of , 220 (1994), Soc. Math. France, Paris Zbl0802.17009MR1272539
- N. Andruskiewitsch, H.-J. Schneider, Finite quantum groups over abelian groups of prime exponent, Ann. Sci. Ec. Norm. Supér. 35 (2002), 1-26 Zbl1007.16028MR1886004
- H. Bass, Algebraic -theory, Benjamin, New York (1968) Zbl0174.30302MR249491
- T. Brzezinski, P.M. Hajac, Galois type extensions and non-commutative geometry, (2003)
- S. Caenepeel, Brauer Groups, Hopf Algebras and Galois Theory, Kluwer Acad. Publ., Dordrecht (1998) Zbl0898.16001MR1610222
- C. de Concini, C. Procesi, Quantum Groups, D-modules, Representation Theory and Quantum Groups 1565 (1993), 31-140, Springer-Verlag, Berlin Zbl0795.17005
- D. Didt, Linkable Dynkin diagrams and quasi-isomorphisms for finite dimensional pointed Hopf algebras, (2002) Zbl1062.16042
- Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 17 (1989), 3053-3085 Zbl0687.16008MR1030610
- Y. Doi, M. Takeuchi, Multiplication alteration by two-cocycles. The quantum version, Comm. Algebra 22 (1994), 5715-5732 Zbl0821.16038MR1298746
- S.M. Gersten, On Mayer-Vietoris functors and algebraic -theory, J. Algebra 18 (1971), 51-88 Zbl0215.09801MR280570
- H. Hasse, Die Multiplikationsgruppe der abelschen Körper mit fester Galois-Gruppe, Abh. Math. Sem. Univ. Hamburg, 16 (1949), 29-40 Zbl0039.26801MR32597
- D. Husemoller, Fibre Bundles, Second Edition, 20 (1975), Springer-Verlag, New York-Heidelberg Zbl0307.55015MR370578
- J.C. Jantzen, Lectures on Quantum Groups, 6 (1995), Amer. Math. Soc., Providence, RI Zbl0842.17012MR1359532
- C. Kassel, Quantum principal bundles up to homotopy equivalence, The legacy of Niels Henrik Abel (2004), 737-748, Springer-Verlag Zbl1087.16027MR2077593
- A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Texts and Monographs in Physics (1997), Springer-Verlag, Berlin Zbl0891.17010MR1492989
- H.F. Kreimer, M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), 675-692 Zbl0451.16005MR625597
- T.Y. Lam, Lectures on modules and rings, 189 (1999), Springer-Verlag, New York Zbl0911.16001MR1653294
- A. Masuoka, Cleft extensions for a Hopf algebra generated by a nearly primitive element, Comm. Algebra 22 (1994), 4537-4559 Zbl0809.16046MR1284344
- A. Masuoka, Defending the negated Kaplansky conjecture, Proc. Amer. Math. Soc. 129 (2001), 3185-3192 Zbl0985.16026MR1844991
- S. Montgomery, Hopf Algebras and Their Actions on Rings, 82 (1993), Amer. Math. Soc., Providence, RI Zbl0793.16029MR1243637
- S. Montgomery, H.-J. Schneider, Krull relations in Hopf Galois extensions: lifting and twisting, J. Algebra 288 (2005), 364-383 Zbl1086.16021MR2146134
- C. Pedrini, On the of certain polynomial extensions, 342 (1973), 92-108, Springer-Verlag, Berlin Zbl0287.18014MR371882
- P. Schauenburg, Hopf-Galois and bi-Galois extensions, 43 (2004), Amer. Math. Soc. Zbl1091.16023MR2075600
- H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990), 167-195 Zbl0731.16027MR1098988
- R.G. Swan, Some relations between higher -functors, J. Algebra 21 (1972), 113-136 Zbl0243.18020MR313361
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.