Homotopy theory of Hopf Galois extensions

Christian Kassel[1]; Hans-Jürgen Schneider[2]

  • [1] Université Louis Pasteur, Institut de Recherche Mathématique Avancée, CNRS, 7 rue René Descartes, 67084 Strasbourg (France)
  • [2] Universität München, Mathematisches Institut, Theresienstr. 39, 80333 Munich (Allemagne)

Annales de l'institut Fourier (2005)

  • Volume: 55, Issue: 7, page 2521-2550
  • ISSN: 0373-0956

Abstract

top
We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all H -Galois extensions up to homotopy equivalence in the case when H is a Drinfeld-Jimbo quantum group.

How to cite

top

Kassel, Christian, and Schneider, Hans-Jürgen. "Homotopy theory of Hopf Galois extensions." Annales de l'institut Fourier 55.7 (2005): 2521-2550. <http://eudml.org/doc/116262>.

@article{Kassel2005,
abstract = {We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all $H$-Galois extensions up to homotopy equivalence in the case when $H$ is a Drinfeld-Jimbo quantum group.},
affiliation = {Université Louis Pasteur, Institut de Recherche Mathématique Avancée, CNRS, 7 rue René Descartes, 67084 Strasbourg (France); Universität München, Mathematisches Institut, Theresienstr. 39, 80333 Munich (Allemagne)},
author = {Kassel, Christian, Schneider, Hans-Jürgen},
journal = {Annales de l'institut Fourier},
keywords = {Galois extension; Hopf algebra; quantum group; homotopy; noncommutative geometry; principal fibre bundle; Hopf-Galois extensions; homotopy equivalences; Hopf algebras; quantum groups},
language = {eng},
number = {7},
pages = {2521-2550},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homotopy theory of Hopf Galois extensions},
url = {http://eudml.org/doc/116262},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Kassel, Christian
AU - Schneider, Hans-Jürgen
TI - Homotopy theory of Hopf Galois extensions
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2521
EP - 2550
AB - We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all $H$-Galois extensions up to homotopy equivalence in the case when $H$ is a Drinfeld-Jimbo quantum group.
LA - eng
KW - Galois extension; Hopf algebra; quantum group; homotopy; noncommutative geometry; principal fibre bundle; Hopf-Galois extensions; homotopy equivalences; Hopf algebras; quantum groups
UR - http://eudml.org/doc/116262
ER -

References

top
  1. H.H. Andersen, J. Jantzen, W. Soergel, Representations of quantum groups at a p -th root of unity and of semisimple groups in characteristic p : Independence of p , 220 (1994), Soc. Math. France, Paris Zbl0802.17009MR1272539
  2. N. Andruskiewitsch, H.-J. Schneider, Finite quantum groups over abelian groups of prime exponent, Ann. Sci. Ec. Norm. Supér. 35 (2002), 1-26 Zbl1007.16028MR1886004
  3. H. Bass, Algebraic K -theory, Benjamin, New York (1968) Zbl0174.30302MR249491
  4. T. Brzezinski, P.M. Hajac, Galois type extensions and non-commutative geometry, (2003) 
  5. S. Caenepeel, Brauer Groups, Hopf Algebras and Galois Theory, Kluwer Acad. Publ., Dordrecht (1998) Zbl0898.16001MR1610222
  6. C. de Concini, C. Procesi, Quantum Groups, D-modules, Representation Theory and Quantum Groups 1565 (1993), 31-140, Springer-Verlag, Berlin Zbl0795.17005
  7. D. Didt, Linkable Dynkin diagrams and quasi-isomorphisms for finite dimensional pointed Hopf algebras, (2002) Zbl1062.16042
  8. Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 17 (1989), 3053-3085 Zbl0687.16008MR1030610
  9. Y. Doi, M. Takeuchi, Multiplication alteration by two-cocycles. The quantum version, Comm. Algebra 22 (1994), 5715-5732 Zbl0821.16038MR1298746
  10. S.M. Gersten, On Mayer-Vietoris functors and algebraic K -theory, J. Algebra 18 (1971), 51-88 Zbl0215.09801MR280570
  11. H. Hasse, Die Multiplikationsgruppe der abelschen Körper mit fester Galois-Gruppe, Abh. Math. Sem. Univ. Hamburg, 16 (1949), 29-40 Zbl0039.26801MR32597
  12. D. Husemoller, Fibre Bundles, Second Edition, 20 (1975), Springer-Verlag, New York-Heidelberg Zbl0307.55015MR370578
  13. J.C. Jantzen, Lectures on Quantum Groups, 6 (1995), Amer. Math. Soc., Providence, RI Zbl0842.17012MR1359532
  14. C. Kassel, Quantum principal bundles up to homotopy equivalence, The legacy of Niels Henrik Abel (2004), 737-748, Springer-Verlag Zbl1087.16027MR2077593
  15. A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Texts and Monographs in Physics (1997), Springer-Verlag, Berlin Zbl0891.17010MR1492989
  16. H.F. Kreimer, M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), 675-692 Zbl0451.16005MR625597
  17. T.Y. Lam, Lectures on modules and rings, 189 (1999), Springer-Verlag, New York Zbl0911.16001MR1653294
  18. A. Masuoka, Cleft extensions for a Hopf algebra generated by a nearly primitive element, Comm. Algebra 22 (1994), 4537-4559 Zbl0809.16046MR1284344
  19. A. Masuoka, Defending the negated Kaplansky conjecture, Proc. Amer. Math. Soc. 129 (2001), 3185-3192 Zbl0985.16026MR1844991
  20. S. Montgomery, Hopf Algebras and Their Actions on Rings, 82 (1993), Amer. Math. Soc., Providence, RI Zbl0793.16029MR1243637
  21. S. Montgomery, H.-J. Schneider, Krull relations in Hopf Galois extensions: lifting and twisting, J. Algebra 288 (2005), 364-383 Zbl1086.16021MR2146134
  22. C. Pedrini, On the K 0 of certain polynomial extensions, 342 (1973), 92-108, Springer-Verlag, Berlin Zbl0287.18014MR371882
  23. P. Schauenburg, Hopf-Galois and bi-Galois extensions, 43 (2004), Amer. Math. Soc. Zbl1091.16023MR2075600
  24. H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990), 167-195 Zbl0731.16027MR1098988
  25. R.G. Swan, Some relations between higher K -functors, J. Algebra 21 (1972), 113-136 Zbl0243.18020MR313361

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.