ε-constants and equivariant Arakelov–Euler characteristics
Ted Chinburg; Georgios Pappas; Martin J. Taylor
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 3, page 307-352
- ISSN: 0012-9593
Access Full Article
topHow to cite
topChinburg, Ted, Pappas, Georgios, and Taylor, Martin J.. "ε-constants and equivariant Arakelov–Euler characteristics." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 307-352. <http://eudml.org/doc/82572>.
@article{Chinburg2002,
author = {Chinburg, Ted, Pappas, Georgios, Taylor, Martin J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {equivariant; tame},
language = {eng},
number = {3},
pages = {307-352},
publisher = {Elsevier},
title = {ε-constants and equivariant Arakelov–Euler characteristics},
url = {http://eudml.org/doc/82572},
volume = {35},
year = {2002},
}
TY - JOUR
AU - Chinburg, Ted
AU - Pappas, Georgios
AU - Taylor, Martin J.
TI - ε-constants and equivariant Arakelov–Euler characteristics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 307
EP - 352
LA - eng
KW - equivariant; tame
UR - http://eudml.org/doc/82572
ER -
References
top- [1] Arai K., Conductor formula of Bloch, in tame case, Thesis, University of Tokyo, 2000 (in Japanese).
- [2] Bismut J.-M., Equivariant immersions and Quillen metrics, J. Differential Geom.41 (1995) 53-157. Zbl0826.32024MR1316553
- [3] Bloch S., Cycles on Arithmetic schemes and Euler characteristics of curves, in: Proceedings of Symposia in Pure Math., Vol. 46, Part 2, AMS, 421–450. Zbl0654.14004MR927991
- [4] Burns D., Equivariant Tamagawa numbers and Galois module theory I, preprint. MR1863302
- [5] Burns D., Equivariant Tamagawa numbers and Galois module theory II, preprint. MR1863302
- [6] Cassou-Noguès Ph., Taylor M.J., Local root numbers and hermitian Galois structure of rings of integers, Math. Annalen,263 (1983) 251-261. Zbl0494.12010MR698007
- [7] Chinburg T., Galois structure of de Rham cohomology of tame covers of schemes, Ann. Math.139 (1994) 443-490, Corrigendum: Ann. Math.140 (1994) 251. Zbl0828.14007MR1274097
- [8] Chinburg T., Erez B., Pappas G., Taylor M.J., ε-constants and the Galois structure of de Rham cohomology, Ann. Math.146 (1997) 411-473. Zbl0939.14009
- [9] Chinburg T., Erez B., Pappas G., Taylor M.J., On the ε-constants of arithmetic schemes, Math. Ann.311 (1998) 377-395. Zbl0927.14012
- [10] Chinburg T., Erez B., Pappas G., Taylor M.J., On the ε-constants of a variety over a finite field, Amer. J. Math.119 (1997) 503-522. Zbl0927.14013
- [11] Chinburg T., Erez B., Pappas G., Taylor M.J., Tame actions of group schemes: integrals and slices, Duke Math. J.82 (2) (1996) 269-308. Zbl0907.14021MR1387229
- [12] Chinburg T., Pappas G., Taylor M.J., ε-constants and the Galois structure of de Rham cohomology II, J. Reine Angew. Math.519 (2000) 201-230. Zbl1017.11054
- [13] Chinburg T., Pappas G., Taylor M.J., ε-constants and Arakelov–Euler characteristics, Math. Res. Lett.7 (2000) 433-446. Zbl1097.14501
- [14] Chinburg T., Pappas G., Taylor M.J., Duality and hermitian Galois module structure, to appear in the Proc. L.M.S. Zbl1109.11053MR1978570
- [15] Deligne P., Les constantes des équations fonctionnelles des fonctions L, in: Lecture Notes in Math., 349, Springer-Verlag, Heidelberg, 1974, pp. 501-597. Zbl0271.14011MR349635
- [16] Fröhlich A., Galois Module Structure of Algebraic Integers, Springer Ergebnisse, Band 1, Folge 3, Springer-Verlag, Heidelberg, 1983. Zbl0501.12012MR717033
- [17] Fröhlich A., Classgroups and Hermitian Modules, Progress in Mathematics, 48, Birkhäuser, Basel, 1984. Zbl0539.12005MR756236
- [18] Fröhlich A., Taylor M.J., Algebraic Number Theory, Cambridge Studies in Advanced Mathematics, 27, Cambridge University Press, 1991. Zbl0744.11001MR1215934
- [19] Fulton W., Lang S., Riemann–Roch Algebra, Grundlehren, 277, Springer-Verlag, 1985. Zbl0579.14011MR801033
- [20] Gillet H., Soulé C., Characteristic classes for algebraic vector bundles with hermitian metrics I, II, Ann. Math.131 (1990) 163-203, 205–238. Zbl0715.14018MR1038362
- [21] Gillet H., Soulé C., An arithmetic Riemann–Roch theorem, Invent. Math.110 (1992) 473-543. Zbl0777.14008MR1189489
- [22] Gillet H., Soulé C., Analytic torsion and the arithmetic Todd genus. With an appendix by D. Zagier, Topology30 (1) (1991) 21-54. Zbl0787.14005MR1081932
- [23] Hartshorne R., Residues and Duality, Lecture Notes in Math., 20, Springer-Verlag, 1966. Zbl0212.26101MR222093
- [24] Hecke E., Mathematische Werke, Vandenhoeck and Ruprecht, Göttingen, 1983. Zbl0092.00102MR749754
- [25] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer Graduate Texts in Mathematics, 84, Springer, New York, 1982. Zbl0482.10001MR661047
- [26] Kato K., Logarithmic structures of Fontaine-Illusie, in: Proc. 1st JAMI Conf., Johns-Hopkins Univ. Press, 1990, pp. 191-224. Zbl0776.14004MR1463703
- [27] Knusden F., Mumford D., The projectivity of moduli spaces of stable curves, Math. Scand.39 (1976) 19-55. Zbl0343.14008MR437541
- [28] Kato K., Saito T., Conductor formula of Bloch, preprint, 2001.
- [29] Lang S., Algebraic Number Theory, Addison-Wesley, Reading MA, 1970. Zbl0211.38404MR282947
- [30] Martinet J., Character theory and Artin L-functions, in: Fröhlich A. (Ed.), Algebraic Number Fields, Proc. Durham Symposium 1975, Academic Press, London, 1977. Zbl0359.12015MR447187
- [31] Milne J.S., Étale Cohomology, Princeton University Press, 1980. Zbl0433.14012MR559531
- [32] Ray D.B., Singer I.M., Analytic torsion for complex manifolds, Ann. of Math. (2)98 (1973) 154-177. Zbl0267.32014MR383463
- [33] Saito T., ε-factor of a tamely ramified sheaf on a variety, Inv. Math.113 (1993) 389-417. Zbl0790.14016
- [34] Soulé C., Abramovich D., Burnol J.-F., Kramer J., Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics, 33, Cambridge University Press, Cambridge, 1992. Zbl0812.14015MR1208731
- [35] Tate J., Fröhlich A. (Ed.), Thesis in “Algebraic Number Fields”, Academic Press, 1976.
- [36] Taylor M.J., On Fröhlich's conjecture for rings of integers of tame extensions, Invent. Math.63 (1981) 41-79. Zbl0469.12003MR608528
- [37] Taylor M.J., Classgroups of Group Rings, LMS Lecture Notes, 91, Cambridge University Press, Cambridge, 1984. Zbl0597.13002MR748670
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.