ε-constants and equivariant Arakelov–Euler characteristics

Ted Chinburg; Georgios Pappas; Martin J. Taylor

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 3, page 307-352
  • ISSN: 0012-9593

How to cite

top

Chinburg, Ted, Pappas, Georgios, and Taylor, Martin J.. "ε-constants and equivariant Arakelov–Euler characteristics." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 307-352. <http://eudml.org/doc/82572>.

@article{Chinburg2002,
author = {Chinburg, Ted, Pappas, Georgios, Taylor, Martin J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {equivariant; tame},
language = {eng},
number = {3},
pages = {307-352},
publisher = {Elsevier},
title = {ε-constants and equivariant Arakelov–Euler characteristics},
url = {http://eudml.org/doc/82572},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Chinburg, Ted
AU - Pappas, Georgios
AU - Taylor, Martin J.
TI - ε-constants and equivariant Arakelov–Euler characteristics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 307
EP - 352
LA - eng
KW - equivariant; tame
UR - http://eudml.org/doc/82572
ER -

References

top
  1. [1] Arai K., Conductor formula of Bloch, in tame case, Thesis, University of Tokyo, 2000 (in Japanese). 
  2. [2] Bismut J.-M., Equivariant immersions and Quillen metrics, J. Differential Geom.41 (1995) 53-157. Zbl0826.32024MR1316553
  3. [3] Bloch S., Cycles on Arithmetic schemes and Euler characteristics of curves, in: Proceedings of Symposia in Pure Math., Vol. 46, Part 2, AMS, 421–450. Zbl0654.14004MR927991
  4. [4] Burns D., Equivariant Tamagawa numbers and Galois module theory I, preprint. MR1863302
  5. [5] Burns D., Equivariant Tamagawa numbers and Galois module theory II, preprint. MR1863302
  6. [6] Cassou-Noguès Ph., Taylor M.J., Local root numbers and hermitian Galois structure of rings of integers, Math. Annalen,263 (1983) 251-261. Zbl0494.12010MR698007
  7. [7] Chinburg T., Galois structure of de Rham cohomology of tame covers of schemes, Ann. Math.139 (1994) 443-490, Corrigendum: Ann. Math.140 (1994) 251. Zbl0828.14007MR1274097
  8. [8] Chinburg T., Erez B., Pappas G., Taylor M.J., ε-constants and the Galois structure of de Rham cohomology, Ann. Math.146 (1997) 411-473. Zbl0939.14009
  9. [9] Chinburg T., Erez B., Pappas G., Taylor M.J., On the ε-constants of arithmetic schemes, Math. Ann.311 (1998) 377-395. Zbl0927.14012
  10. [10] Chinburg T., Erez B., Pappas G., Taylor M.J., On the ε-constants of a variety over a finite field, Amer. J. Math.119 (1997) 503-522. Zbl0927.14013
  11. [11] Chinburg T., Erez B., Pappas G., Taylor M.J., Tame actions of group schemes: integrals and slices, Duke Math. J.82 (2) (1996) 269-308. Zbl0907.14021MR1387229
  12. [12] Chinburg T., Pappas G., Taylor M.J., ε-constants and the Galois structure of de Rham cohomology II, J. Reine Angew. Math.519 (2000) 201-230. Zbl1017.11054
  13. [13] Chinburg T., Pappas G., Taylor M.J., ε-constants and Arakelov–Euler characteristics, Math. Res. Lett.7 (2000) 433-446. Zbl1097.14501
  14. [14] Chinburg T., Pappas G., Taylor M.J., Duality and hermitian Galois module structure, to appear in the Proc. L.M.S. Zbl1109.11053MR1978570
  15. [15] Deligne P., Les constantes des équations fonctionnelles des fonctions L, in: Lecture Notes in Math., 349, Springer-Verlag, Heidelberg, 1974, pp. 501-597. Zbl0271.14011MR349635
  16. [16] Fröhlich A., Galois Module Structure of Algebraic Integers, Springer Ergebnisse, Band 1, Folge 3, Springer-Verlag, Heidelberg, 1983. Zbl0501.12012MR717033
  17. [17] Fröhlich A., Classgroups and Hermitian Modules, Progress in Mathematics, 48, Birkhäuser, Basel, 1984. Zbl0539.12005MR756236
  18. [18] Fröhlich A., Taylor M.J., Algebraic Number Theory, Cambridge Studies in Advanced Mathematics, 27, Cambridge University Press, 1991. Zbl0744.11001MR1215934
  19. [19] Fulton W., Lang S., Riemann–Roch Algebra, Grundlehren, 277, Springer-Verlag, 1985. Zbl0579.14011MR801033
  20. [20] Gillet H., Soulé C., Characteristic classes for algebraic vector bundles with hermitian metrics I, II, Ann. Math.131 (1990) 163-203, 205–238. Zbl0715.14018MR1038362
  21. [21] Gillet H., Soulé C., An arithmetic Riemann–Roch theorem, Invent. Math.110 (1992) 473-543. Zbl0777.14008MR1189489
  22. [22] Gillet H., Soulé C., Analytic torsion and the arithmetic Todd genus. With an appendix by D. Zagier, Topology30 (1) (1991) 21-54. Zbl0787.14005MR1081932
  23. [23] Hartshorne R., Residues and Duality, Lecture Notes in Math., 20, Springer-Verlag, 1966. Zbl0212.26101MR222093
  24. [24] Hecke E., Mathematische Werke, Vandenhoeck and Ruprecht, Göttingen, 1983. Zbl0092.00102MR749754
  25. [25] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer Graduate Texts in Mathematics, 84, Springer, New York, 1982. Zbl0482.10001MR661047
  26. [26] Kato K., Logarithmic structures of Fontaine-Illusie, in: Proc. 1st JAMI Conf., Johns-Hopkins Univ. Press, 1990, pp. 191-224. Zbl0776.14004MR1463703
  27. [27] Knusden F., Mumford D., The projectivity of moduli spaces of stable curves, Math. Scand.39 (1976) 19-55. Zbl0343.14008MR437541
  28. [28] Kato K., Saito T., Conductor formula of Bloch, preprint, 2001. 
  29. [29] Lang S., Algebraic Number Theory, Addison-Wesley, Reading MA, 1970. Zbl0211.38404MR282947
  30. [30] Martinet J., Character theory and Artin L-functions, in: Fröhlich A. (Ed.), Algebraic Number Fields, Proc. Durham Symposium 1975, Academic Press, London, 1977. Zbl0359.12015MR447187
  31. [31] Milne J.S., Étale Cohomology, Princeton University Press, 1980. Zbl0433.14012MR559531
  32. [32] Ray D.B., Singer I.M., Analytic torsion for complex manifolds, Ann. of Math. (2)98 (1973) 154-177. Zbl0267.32014MR383463
  33. [33] Saito T., ε-factor of a tamely ramified sheaf on a variety, Inv. Math.113 (1993) 389-417. Zbl0790.14016
  34. [34] Soulé C., Abramovich D., Burnol J.-F., Kramer J., Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics, 33, Cambridge University Press, Cambridge, 1992. Zbl0812.14015MR1208731
  35. [35] Tate J., Fröhlich A. (Ed.), Thesis in “Algebraic Number Fields”, Academic Press, 1976. 
  36. [36] Taylor M.J., On Fröhlich's conjecture for rings of integers of tame extensions, Invent. Math.63 (1981) 41-79. Zbl0469.12003MR608528
  37. [37] Taylor M.J., Classgroups of Group Rings, LMS Lecture Notes, 91, Cambridge University Press, Cambridge, 1984. Zbl0597.13002MR748670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.