Kontsevich quantization and invariant distributions on Lie groups

Martin Andler; Alexander Dvorsky; Siddhartha Sahi

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 3, page 371-390
  • ISSN: 0012-9593

How to cite

top

Andler, Martin, Dvorsky, Alexander, and Sahi, Siddhartha. "Kontsevich quantization and invariant distributions on Lie groups." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 371-390. <http://eudml.org/doc/82574>.

@article{Andler2002,
author = {Andler, Martin, Dvorsky, Alexander, Sahi, Siddhartha},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {star product; deformation quantization; Kashiwara-Vergne conjecture; invariant distribution; bi-invariant differential operator; Poisson manifolds; Lie superalgebras},
language = {eng},
number = {3},
pages = {371-390},
publisher = {Elsevier},
title = {Kontsevich quantization and invariant distributions on Lie groups},
url = {http://eudml.org/doc/82574},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Andler, Martin
AU - Dvorsky, Alexander
AU - Sahi, Siddhartha
TI - Kontsevich quantization and invariant distributions on Lie groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 371
EP - 390
LA - eng
KW - star product; deformation quantization; Kashiwara-Vergne conjecture; invariant distribution; bi-invariant differential operator; Poisson manifolds; Lie superalgebras
UR - http://eudml.org/doc/82574
ER -

References

top
  1. [1] Kontsevich M., Deformation quantization of Poisson manifolds I, e-print, math.QA/9709040. Zbl1058.53065
  2. [2] Andler M., Dvorsky A., Sahi S., Deformation quantization and invariant distributions, C. R. Acad. Sci.330 (2000) 115-120. Zbl0957.22022MR1745177
  3. [3] Arnal D., Manchon D., Masmoudi M., Choix des signes pour la formalité de M. Kontsevich, Pacific J. Math.203 (2002) 23-66. Zbl1055.53066MR1895924
  4. [4] Berezin F., The Method of Second Quantization, Academic Press, New York, 1966. Zbl0151.44001MR208930
  5. [5] DeWitt B., Supermanifolds, Cambridge Univ. Press, Cambridge, 1992. Zbl0874.53055MR1172996
  6. [6] Dixmier J., Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR498737
  7. [7] Duflo M., Caractères des algèbres de Lie résolubles, C. R. Acad. Sci.269 (1969) 437-438. Zbl0254.17006MR251089
  8. [8] Duflo M., Sur les extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. Sci. École Norm. Sup.5 (1972) 71-120. Zbl0241.22030MR302823
  9. [9] Duflo M., Construction of primitive ideals in an enveloping algebra, in: Gelfand I. (Ed.), Lie Groups and their Representations, Adam Hilger Ltd, London, 1975. Zbl0313.17005MR399194
  10. [10] Duflo M., Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup.10 (1977) 267-288. Zbl0353.22009MR444841
  11. [11] Duflo M., Rais M., Sur l'analyse harmonique sur les groupes de Lie résolubles, Ann. Sci. École Norm. Sup.9 (1976) 107-114. Zbl0324.43011
  12. [12] Fulton W., MacPherson R., Compactification of configuration spaces, Ann. Math. (2)139 (1994) 183-225. Zbl0820.14037MR1259368
  13. [13] Helgason S., The surjectivity of invariant differential operators on a symmetric space, Ann. Math. (2)98 (1973) 451-479. Zbl0274.43013MR367562
  14. [14] Kashiwara M., Vergne M., The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math.47 (1978) 249-272. Zbl0404.22012MR492078
  15. [15] Kirillov A.A., Merits and demerits of the orbit method, Bull. Amer. Math. Soc.36 (1999) 433-488. Zbl0940.22013MR1701415
  16. [16] Kontsevich M., private communication. 
  17. [17] Kostant B., Graded Manifolds, Graded Lie Theory and Prequantization, Lect. Notes in Math., 570, Springer, Berlin, 1977. Zbl0358.53024MR580292
  18. [18] Lewy H., An example of a smooth linear partial differential equation without solution, Ann. Math. (2)66 (1957) 155-158. Zbl0078.08104MR88629
  19. [19] Manin Yu., Gauge Field Theory and Complex Geometry, Springer, Berlin, 1988. Zbl0641.53001MR954833
  20. [20] Rais M., Solutions élémentaires des opérateurs différentiels bi-invariants sur un groupe de Lie nilpotent, C. R. Acad. Sci.273 (1971) 495-498. Zbl0236.46047MR289720
  21. [21] Rais M., Opérateurs différentiels bi-invariants (d'après M. Duflo), Lect. Notes in Math., 667, Springer, Berlin, 1978, pp. 125–137. Zbl0385.22005MR521764
  22. [22] Shoikhet B., Vanishing of the Kontsevich integral of the wheels, e-print, math.QA/0007080. Zbl1018.53043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.