Semisimple strata for p-adic classical groups

Shaun Stevens

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 3, page 423-435
  • ISSN: 0012-9593

How to cite

top

Stevens, Shaun. "Semisimple strata for p-adic classical groups." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 423-435. <http://eudml.org/doc/82576>.

@article{Stevens2002,
author = {Stevens, Shaun},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Galois involution; reductive group; semisimple skew stratum; supercuspidal representation},
language = {eng},
number = {3},
pages = {423-435},
publisher = {Elsevier},
title = {Semisimple strata for p-adic classical groups},
url = {http://eudml.org/doc/82576},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Stevens, Shaun
TI - Semisimple strata for p-adic classical groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 423
EP - 435
LA - eng
KW - Galois involution; reductive group; semisimple skew stratum; supercuspidal representation
UR - http://eudml.org/doc/82576
ER -

References

top
  1. [1] Auzende F., Construction de types à la Bushnell et Kutzko dans les groupes Sp2N et SO2N, Prépublication 98-15 du LMENS, 1998. 
  2. [2] Blasco L., Blondel C., Types induits des paraboliques maximaux de Sp4(F) et GSp4(F), Ann. Inst. Fourier (Grenoble)49 (6) (1999) 1805-1851. Zbl0937.22010MR1738067
  3. [3] Broussous P., Minimal strata for GL(m,D), J. Reine Angew. Math.514 (1) (1999) 199-236. Zbl0936.22011MR1711267
  4. [4] Broussous P., The building of GL(m,D) as a space of lattice functions, Preprint, King's College London, 1998. 
  5. [5] Bushnell C.J., Hereditary orders, Gauss sums, and supercuspidal representations of GLN, J. Reine Angew. Math.375/376 (1987) 184-210. Zbl0601.12025MR882297
  6. [6] Bushnell C.J., Kutzko P.C., The Admissible Dual of GL(N) via Compact Open Subgroups, Princeton University Press, 1993. Zbl0787.22016MR1204652
  7. [7] Bushnell C.J., Kutzko P.C., Semisimple types, Compositio Math.119 (1999) 53-97. Zbl0933.22027MR1711578
  8. [8] Bushnell C.J., Kutzko P.C., Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3)77 (1998) 582-634. Zbl0911.22014MR1643417
  9. [9] Bushnell C.J., Kutzko P.C., Supercuspidal representations ofGL(N), Manuscript, King's College London, 1996. 
  10. [10] Howe R., Moy A., Minimal K-types for GLn over a p-adic field, SMF, Astérisque171–172 (1989) 257-273. Zbl0715.22018MR1021505
  11. [11] Kutzko P.C., Towards a classification of the supercuspidal representations of GLN, J. London Math. Soc. (2)37 (1988) 265-274. Zbl0678.22009MR928523
  12. [12] Lemaire B., Strates scindées pour un groupe réductif p-adique, C. R. Acad. Sci. Paris Sér. I Math.326 (4) (1998) 407-410. Zbl0909.22035MR1648959
  13. [13] Morris L.E., Fundamental G-strata for p-adic classical groups, Duke Math. J.64 (1991) 501-553. Zbl0799.22009MR1141284
  14. [14] Morris L.E., Tamely ramified supercuspidal representations of classical groups I: Filtrations, Ann. Sci. École Norm. Sup. (4)24 (6) (1991) 705-738. Zbl0756.20006MR1142907
  15. [15] Morris L.E., Level zero G-types, Compositio Math.118 (2) (1999) 135-157. Zbl0937.22011MR1713308
  16. [16] Moy A., Prasad G., Unrefined minimal K-types for p-adic groups, Invent. Math.116 (1994) 393-408. Zbl0804.22008MR1253198
  17. [17] Moy A., Prasad G., Jacquet functors and unrefined minimal K-types, Comment. Math. Helv.71 (1) (1996) 98-121. Zbl0860.22006MR1371680
  18. [18] Pan S.-Y., Yu J.-K., Unrefined minimal K-types for p-adic classical groups, Manuscript, Princeton University, 1998. 
  19. [19] Stevens S., Double coset decompositions and intertwining, Manuscripta Math.106 (2001) 349-364. Zbl0988.22008MR1869226
  20. [20] Stevens S., Intertwining and supercuspidal types for classical p-adic groups, Proc. London Math. Soc. (3)83 (2001) 120-140. Zbl1017.22012MR1829562

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.