Actions de groupes de Kazhdan sur le cercle

Andrés Navas

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 5, page 749-758
  • ISSN: 0012-9593

How to cite

top

Navas, Andrés. "Actions de groupes de Kazhdan sur le cercle." Annales scientifiques de l'École Normale Supérieure 35.5 (2002): 749-758. <http://eudml.org/doc/82588>.

@article{Navas2002,
author = {Navas, Andrés},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Kazhdan group},
language = {fre},
number = {5},
pages = {749-758},
publisher = {Elsevier},
title = {Actions de groupes de Kazhdan sur le cercle},
url = {http://eudml.org/doc/82588},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Navas, Andrés
TI - Actions de groupes de Kazhdan sur le cercle
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 5
SP - 749
EP - 758
LA - fre
KW - Kazhdan group
UR - http://eudml.org/doc/82588
ER -

References

top
  1. [1] Alperin R, Locally compact groups acting on trees and property (T), Mh. Math.93 (1982) 261-265. Zbl0488.22014MR666827
  2. [2] Bonahon F, The geometry of Teichmüller space via geodesic currents, Inv. Math.92 (1988) 139-162. Zbl0653.32022MR931208
  3. [3] Burger M, Monod N, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS)1 (1999) 199-235. Zbl0932.22008MR1694584
  4. [4] Burger M., Monod N., Continuous bounded cohomology and applications to rigidity theory. Geometric and Functional Analysis, à paraître. Zbl1006.22010
  5. [5] Casson A, Jungreis D, Convergence groups and Seifert fibered 3-manifolds, Inv. Math.118 (1994) 441-456. Zbl0840.57005MR1296353
  6. [6] Farb B, Shalen P, Real-analytic actions of lattices, Inv. Math.135 (1999) 273-296. Zbl0954.22007MR1666834
  7. [7] Gabai D, Convergence groups are Fuchsian groups, Ann. of Math.136 (1992) 447-510. Zbl0785.57004MR1189862
  8. [8] Ghys É, Actions de réseaux sur le cercle, Inv. Math.137 (1999) 199-231. Zbl0995.57006MR1703323
  9. [9] Ghys É., Groups acting on the circle, L'Enseignement Mathématique, à paraître. Zbl1044.37033
  10. [10] Gromov M, Hyperbolic groups, in: Essays in Group Theory, Springer-Verlag, 1987, pp. 75-263. Zbl0634.20015MR919829
  11. [11] Ghys É, Sergiescu V, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helvetici62 (1987) 185-239. Zbl0647.58009MR896095
  12. [12] Hector G, Hirsch U, Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One, Aspect of Mathematics, 1987. Zbl0704.57001MR1110794
  13. [13] Hinkkanen A, Abelian and nondiscrete convergence groups of the circle, Trans. AMS318 (1990) 87-121. Zbl0699.30017MR1000145
  14. [14] de la Harpe P, Valette A, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque175 (1989). Zbl0759.22001
  15. [15] Navas A., Actions de groupes de Kazhdan sur le cercle, Prépublication de l'ENS, Lyon. 
  16. [16] Pressley A, Segal G, Loop Groups, Oxford Mathematical Monographs, 1986. Zbl0618.22011MR900587
  17. [17] Reznikov A., Analytic topology of groups, actions, strings and varieties. Chapter 2 : A theory of groups acting in the circle. Preprint, pp. 59–65 (August 11, 1999). http://xxx.lpthe.jussieu.fr/find/math/1/au:+Reznikov_A/0/1/0/all/0/1. 
  18. [18] Tukia P, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math.391 (1988) 1-54. Zbl0644.30027MR961162
  19. [19] Watatani Y, Property (T) of Kazhdan implies property (FA) of Serre, Math. Japon27 (1981) 97-103. Zbl0489.20022MR649023
  20. [20] Witte D, Arithmetic groups of higher Q-rank cannot act on 1-manifolds, Proc. AMS122 (1994) 333-340. Zbl0818.22006MR1198459
  21. [21] Witte D, Products of similar matrices, Proc. AMS126 (1998) 1005-1015. Zbl0893.20033MR1451837
  22. [22] Zuk A., Property (T) and Kazhdan constants for discrete groups, Prépublication de l'ENS, Lyon. Zbl1036.22004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.