On the dynamics of (left) orderable groups
Andrés Navas[1]
- [1] Univ. de Santiago de Chile Alameda 3363 Est. Central Santiago (Chile)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1685-1740
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNavas, Andrés. "On the dynamics of (left) orderable groups." Annales de l’institut Fourier 60.5 (2010): 1685-1740. <http://eudml.org/doc/116319>.
@article{Navas2010,
abstract = {We develop dynamical methods for studying left-orderable groups as well as the spaces of orderings associated to them. We give new and elementary proofs of theorems by Linnell (if a left-orderable group has infinitely many orderings, then it has uncountably many) and McCleary (the space of orderings of the free group is a Cantor set). We show that this last result also holds for countable torsion-free nilpotent groups which are not rank-one Abelian. Finally, we apply our methods to the case of braid groups. In particular, we show that the positive cone of the Dehornoy ordering is not finitely generated as a semigroup. To do this, we define the Conradian soul of an ordering as the maximal convex subgroup restricted to which the ordering is Conradian, and we elaborate on this notion.},
affiliation = {Univ. de Santiago de Chile Alameda 3363 Est. Central Santiago (Chile)},
author = {Navas, Andrés},
journal = {Annales de l’institut Fourier},
keywords = {Orderable groups; Conradian ordering; actions on the line; left-orderable groups; spaces of orderings; Conradian orders; braid groups; Dehornoy order; positive cones; actions on the real line},
language = {eng},
number = {5},
pages = {1685-1740},
publisher = {Association des Annales de l’institut Fourier},
title = {On the dynamics of (left) orderable groups},
url = {http://eudml.org/doc/116319},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Navas, Andrés
TI - On the dynamics of (left) orderable groups
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1685
EP - 1740
AB - We develop dynamical methods for studying left-orderable groups as well as the spaces of orderings associated to them. We give new and elementary proofs of theorems by Linnell (if a left-orderable group has infinitely many orderings, then it has uncountably many) and McCleary (the space of orderings of the free group is a Cantor set). We show that this last result also holds for countable torsion-free nilpotent groups which are not rank-one Abelian. Finally, we apply our methods to the case of braid groups. In particular, we show that the positive cone of the Dehornoy ordering is not finitely generated as a semigroup. To do this, we define the Conradian soul of an ordering as the maximal convex subgroup restricted to which the ordering is Conradian, and we elaborate on this notion.
LA - eng
KW - Orderable groups; Conradian ordering; actions on the line; left-orderable groups; spaces of orderings; Conradian orders; braid groups; Dehornoy order; positive cones; actions on the real line
UR - http://eudml.org/doc/116319
ER -
References
top- L. A. Beklaryan, Groups of homeomorphisms of the line and the circle. Topological characteristics and metric invariants, Uspekhi Mat. Nauk 59 (2004), 4-66 Zbl1073.54018MR2106645
- George M. Bergman, Right orderable groups that are not locally indicable, Pacific J. Math. 147 (1991), 243-248 Zbl0677.06007MR1084707
- Roberta Botto Mura, Akbar Rhemtulla, Orderable groups, (1977), Marcel Dekker Inc., New York Zbl0358.06038MR491396
- Steven Boyer, Dale Rolfsen, Bert Wiest, Orderable 3-manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005), 243-288 Zbl1068.57001MR2141698
- Matthew G. Brin, The chameleon groups of Richard J. Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. (1996), 5-33 Zbl0891.57037MR1441005
- S. D. Brodskiĭ, Equations over groups, and groups with one defining relation, Sibirsk. Mat. Zh. 25 (1984), 84-103 Zbl0579.20020MR741011
- R. N. Buttsworth, A family of groups with a countable infinity of full orders, Bull. Austral. Math. Soc. 4 (1971), 97-104 Zbl0223.06008MR279013
- Danny Calegari, Nonsmoothable, locally indicable group actions on the interval, Algebr. Geom. Topol. 8 (2008), 609-613 Zbl1154.37015MR2443241
- Danny Calegari, Nathan M. Dunfield, Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003), 149-204 Zbl1025.57018MR1965363
- Pierre-Alain Cherix, Florian Martin, Alain Valette, Spaces with measured walls, the Haagerup property and property (T), Ergodic Theory Dynam. Systems 24 (2004), 1895-1908 Zbl1068.43007MR2106770
- A. Clay, Free lattice ordered groups and the topology on the space of left orderings of a group, (2009)
- Adam Clay, Lawrence H. Smith, Corrigendum to: “On ordering free groups” [J. Symbolic Comput. 40 (2005) 1285–1290], J. Symbolic Comput. 44 (2009), 1529-1532 Zbl1171.20314MR2543435
- Paul Conrad, Right-ordered groups, Michigan Math. J. 6 (1959), 267-275 Zbl0099.01703MR106954
- M. A. Dabkowska, M. K. Dabkowski, V. S. Harizanov, J. H. Przytycki, M. A. Veve, Compactness of the space of left orders, J. Knot Theory Ramifications 16 (2007), 257-266 Zbl1129.57024MR2320157
- Mieczysław K. Dąbkowski, Józef H. Przytycki, Amir A. Togha, Non-left-orderable 3-manifold groups, Canad. Math. Bull. 48 (2005), 32-40 Zbl1065.57001MR2118761
- Michael R. Darnel, Theory of lattice-ordered groups, 187 (1995), Marcel Dekker Inc., New York Zbl0810.06016MR1304052
- Patrick Dehornoy, Braids and self-distributivity, 192 (2000), Birkhäuser Verlag, Basel Zbl0958.20033MR1778150
- Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, Bert Wiest, Why are braids orderable?, 14 (2002), Société Mathématique de France, Paris Zbl1048.20021MR1988550
- Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, Bert Wiest, Ordering braids, 148 (2008), American Mathematical Society, Providence, RI Zbl1163.20024MR2463428
- Bertrand Deroin, Victor Kleptsyn, Andrés Navas, Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007), 199-262 Zbl1139.37025MR2358052
- T. V. Dubrovina, N. I. Dubrovin, On braid groups, Mat. Sb. 192 (2001), 53-64 Zbl1037.20036MR1859702
- Alex Furman, Random walks on groups and random transformations, Handbook of dynamical systems, Vol. 1A (2002), 931-1014, North-Holland, Amsterdam Zbl1053.60045MR1928529
- Étienne Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001), 329-407 Zbl1044.37033MR1876932
- A. M. W. Glass, Partially ordered groups, 7 (1999), World Scientific Publishing Co. Inc., River Edge, NJ Zbl0933.06010MR1791008
- Misha Gromov, Spaces and questions, Geom. Funct. Anal. (2000), 118-161 Zbl1006.53035MR1826251
- P. De la Harpe, Topics in geometric group theory, (2000) Zbl0965.20025
- John G. Hocking, Gail S. Young, Topology, (1961), Addison-Wesley Publishing Co., Inc., Reading, Mass.-London Zbl0135.22701MR125557
- M. Horak, M. Stein, Partially ordered groups which act on oriented trees, (2005) Zbl1271.20032
- L. Jiménez, Grupos ordenables: estructura algebraica y dinámica, (2008)
- Vadim A. Kaimanovich, The Poisson boundary of polycyclic groups, Probability measures on groups and related structures, XI (Oberwolfach, 1994) (1995), 182-195, World Sci. Publ., River Edge, NJ Zbl0912.60011MR1414934
- Christian Kassel, L’ordre de Dehornoy sur les tresses, Astérisque (2002), 7-28 Zbl1060.20033MR1886754
- V. M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, 307 (1994), Kluwer Academic Publishers Group, Dordrecht Zbl0834.06015MR1369091
- Valeriĭ M. Kopytov, Nikolaĭ Ya. Medvedev, Right-ordered groups, (1996), Consultants Bureau, New York Zbl0852.06005MR1393199
- Lucy Lifschitz, Dave Witte Morris, Isotropic nonarchimedean -arithmetic groups are not left orderable, C. R. Math. Acad. Sci. Paris 339 (2004), 417-420 Zbl1060.20041MR2092755
- Lucy Lifschitz, Dave Witte Morris, Bounded generation and lattices that cannot act on the line, Pure Appl. Math. Q. 4 (2008), 99-126 Zbl1146.22014MR2405997
- P. Linnell, The topology on the space of left orderings of a group, (2006)
- P. Linnell, The space of left orders of a group is either finite or uncountable, (2009) Zbl1215.06009
- Peter A. Linnell, Left ordered groups with no non-abelian free subgroups, J. Group Theory 4 (2001), 153-168 Zbl0982.06013MR1812322
- P. Longobardi, M. Maj, A. H. Rhemtulla, Groups with no free subsemigroups, Trans. Amer. Math. Soc. 347 (1995), 1419-1427 Zbl0833.20043MR1277124
- Ricardo Mañé, Introdução à teoria ergódica, 14 (1983), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Zbl0581.28010MR800092
- Stephen H. McCleary, Free lattice-ordered groups represented as - transitive -permutation groups, Trans. Amer. Math. Soc. 290 (1985), 69-79 Zbl0546.06013MR787955
- Dave Witte Morris, Arithmetic groups of higher -rank cannot act on -manifolds, Proc. Amer. Math. Soc. 122 (1994), 333-340 Zbl0818.22006MR1198459
- Dave Witte Morris, Amenable groups that act on the line, Algebr. Geom. Topol. 6 (2006), 2509-2518 Zbl1185.20042MR2286034
- Andrés Navas, Actions de groupes de Kazhdan sur le cercle, Ann. Sci. École Norm. Sup. (4) 35 (2002), 749-758 Zbl1028.58010MR1951442
- Andrés Navas, Quelques nouveaux phénomènes de rang 1 pour les groupes de difféomorphismes du cercle, Comment. Math. Helv. 80 (2005), 355-375 Zbl1080.57002MR2142246
- Andrés Navas, Growth of groups and diffeomorphisms of the interval, Geom. Funct. Anal. 18 (2008), 988-1028 Zbl1201.37060MR2439001
- Andrés Navas, A remarkable family of left-orderable groups: Central extensions of Hecke groups, (2009) Zbl1215.06010
- Andrés Navas, A finitely generated, locally indicable group without faithful actions by diffeomorphisms of the interval, Geometry and Topology 14 (2010), 573-584 Zbl1197.37022MR2602845
- Andrés Navas, Cristóbal Rivas, A new characterization of Conrad’s property for group orderings, with applications, Algebr. Geom. Topol. 9 (2009), 2079-2100 Zbl1211.06009MR2551663
- Andrés Navas, Cristóbal Rivas, Describing all bi-orderings on Thompson’s group F, Groups, Geometry, and Dynamics 4 (2010), 163-177 Zbl1193.06015MR2566304
- Andrés Navas, B. Wiest, Nielsen-Thurston orders and the space of braid orders, (2009) Zbl1235.06017
- B. S. Pickelʼ, Informational futures of amenable groups, Dokl. Akad. Nauk SSSR 223 (1975), 1067-1070 Zbl0326.28027MR390176
- J. F. Plante, Foliations with measure preserving holonomy, Ann. of Math. (2) 102 (1975), 327-361 Zbl0314.57018MR391125
- Akbar Rhemtulla, Dale Rolfsen, Local indicability in ordered groups: Braids and elementary amenable groups, Proc. Amer. Math. Soc. 130 (2002), 2569-2577 (electronic) Zbl0996.20024MR1900863
- C. Rivas, On spaces of Conradian group orderings Zbl1192.06015
- C. Rivas, On left-orderable groups, (2010)
- Dale Rolfsen, Bert Wiest, Free group automorphisms, invariant orderings and topological applications, Algebr. Geom. Topol. 1 (2001), 311-320 (electronic) Zbl0985.57006MR1835259
- Hamish Short, Bert Wiest, Orderings of mapping class groups after Thurston, Enseign. Math. (2) 46 (2000), 279-312 Zbl1023.57013MR1805402
- Adam S. Sikora, Topology on the spaces of orderings of groups, Bull. London Math. Soc. 36 (2004), 519-526 Zbl1057.06006MR2069015
- D. M. Smirnov, Right-ordered groups, Algebra i Logika Sem. 5 (1966), 41-59 Zbl0201.36702MR206128
- V. Tararin, On groups having a finite number of orders, (1991) Zbl0751.20034
- V. M. Tararin, On the theory of right-ordered groups, Mat. Zametki 54 (1993), 96-98 Zbl0811.20042MR1244986
- William P. Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974), 347-352 Zbl0305.57025MR356087
- Takashi Tsuboi, -structures avec une seule feuille, Astérisque (1984), 222-234 Zbl0551.57014MR755173
- Stan Wagon, The Banach-Tarski paradox, (1993), Cambridge University Press Zbl0569.43001MR1251963
- A. V. Zenkov, On groups with an infinite set of right orders, Sibirsk. Mat. Zh. 38 (1997), 90-92 Zbl0880.20032MR1446675
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.