The hard Lefschetz theorem and the topology of semismall maps

Mark Andrea A de Cataldo; Luca Migliorini

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 5, page 759-772
  • ISSN: 0012-9593

How to cite

top

de Cataldo, Mark Andrea A, and Migliorini, Luca. "The hard Lefschetz theorem and the topology of semismall maps." Annales scientifiques de l'École Normale Supérieure 35.5 (2002): 759-772. <http://eudml.org/doc/82589>.

@article{deCataldo2002,
author = {de Cataldo, Mark Andrea A, Migliorini, Luca},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {lef line bundle; semismall map; ample bundles; first Chern class; hard Lefschetz theorem; Hodge-Riemann bilinear relations; Grauert contractibility criterion; Hodge index theorem; decomposition theorem; direct image of the constant sheaf; stratification; definite intersection forms},
language = {eng},
number = {5},
pages = {759-772},
publisher = {Elsevier},
title = {The hard Lefschetz theorem and the topology of semismall maps},
url = {http://eudml.org/doc/82589},
volume = {35},
year = {2002},
}

TY - JOUR
AU - de Cataldo, Mark Andrea A
AU - Migliorini, Luca
TI - The hard Lefschetz theorem and the topology of semismall maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 5
SP - 759
EP - 772
LA - eng
KW - lef line bundle; semismall map; ample bundles; first Chern class; hard Lefschetz theorem; Hodge-Riemann bilinear relations; Grauert contractibility criterion; Hodge index theorem; decomposition theorem; direct image of the constant sheaf; stratification; definite intersection forms
UR - http://eudml.org/doc/82589
ER -

References

top
  1. [1] Beilinson A.A., Bernstein J.N., Deligne P., Faisceaux pervers, Astérisque100 (1982). Zbl0536.14011MR751966
  2. [2] Borel A. et al. , Intersection Cohomology, Progress in Mathematics, 50, Birkhäuser, Boston, 1984. Zbl0553.14002MR788171
  3. [3] Borho W., MacPherson R., Partial resolutions of nilpotent varieties, Astérisque101–102 (1983) 23-74. Zbl0576.14046MR737927
  4. [4] Chriss N., Ginzburg V., Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997. Zbl0879.22001MR1433132
  5. [5] de Cataldo M., Migliorini L., The Douady space of a complex surface, Adv. in Math.151 (2000) 283-312. Zbl0991.32006MR1758249
  6. [6] Deligne P., Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. IHES35 (1969) 107-126. Zbl0159.22501MR244265
  7. [7] Deligne P., Théorie de Hodge, II, Publ. Math. IHES40 (1971) 5-57. Zbl0219.14007MR498551
  8. [8] Deligne P., Théorie de Hodge, III, Publ. Math. IHES44 (1974) 5-78. Zbl0237.14003MR498552
  9. [9] Deligne P., La conjecture de Weil, II, Publ. Math. IHES52 (1980) 138-252. Zbl0456.14014MR601520
  10. [10] Esnault H., Viehweg E., Vanishing and non-vanishing theorems, Actes du Colloque de Théorie de Hodge, Astérisque179–180 (1989) 97-112. Zbl0705.14018MR1042803
  11. [11] Fulton W., Intersection Theory, Ergebnisse der Mathematik, 3.folge. Band 2, Springer-Verlag, Berlin, 1984. Zbl0885.14002MR732620
  12. [12] Goresky M., MacPherson R., Intersection homology II, Inv. Math.71 (1983) 77-129. Zbl0529.55007MR696691
  13. [13] Goresky M., MacPherson R., Stratified Morse Theory, Ergebnisse der Mathematik, 3.folge. Band 2, Springer-Verlag, Berlin, 1988. Zbl0639.14012MR932724
  14. [14] Iversen B., Cohomology of Sheaves, Universitext, Springer-Verlag, Berlin, 1986. Zbl1272.55001MR842190
  15. [15] Laufer H., Normal Two-Dimensional Singularities, Annals of Mathematics Studies, 71, Princeton University Press, 1971. Zbl0245.32005MR320365
  16. [16] Looijenga E., Cohomology and intersection hohomology of algebraic varieties, in: Kollár J. (Ed.), Complex Algebraic Geometry, IAS/Park City Mathematics Series, 3, American Mathematical Society, 1997, pp. 221-264. Zbl0910.14006MR1442524
  17. [17] Migliorini L., A smooth family of minimal surfaces of general type over a curve of genus at most one is trivial, J. Algebraic Geometry4 (1995) 353-361. Zbl0834.14021MR1311355
  18. [18] Saito M., Decomposition theorem for proper Kähler morphisms, Tohoku Math. J. (2)42 (2) (1990) 127-147. Zbl0699.14009MR1053945
  19. [19] Wiśniewski J.A., Cohomological invariants of complex manifolds coming from extremal rays, Asian J. Math.2 (2) (1998) 289-302. Zbl0949.14008MR1639552

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.