Unibranch orbit closures in module varieties

Grzegorz Zwara

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 6, page 877-895
  • ISSN: 0012-9593

How to cite

top

Zwara, Grzegorz. "Unibranch orbit closures in module varieties." Annales scientifiques de l'École Normale Supérieure 35.6 (2002): 877-895. <http://eudml.org/doc/82591>.

@article{Zwara2002,
author = {Zwara, Grzegorz},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {finite-dimensional algebras; indecomposable left modules; orbit closures; module varieties},
language = {eng},
number = {6},
pages = {877-895},
publisher = {Elsevier},
title = {Unibranch orbit closures in module varieties},
url = {http://eudml.org/doc/82591},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Zwara, Grzegorz
TI - Unibranch orbit closures in module varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 6
SP - 877
EP - 895
LA - eng
KW - finite-dimensional algebras; indecomposable left modules; orbit closures; module varieties
UR - http://eudml.org/doc/82591
ER -

References

top
  1. [1] Bobiński G., Zwara G., Normality of orbit closures for Dynkin quivers of type An, Manuscr. Math.105 (2001) 103-109. Zbl1031.16012MR1885816
  2. [2] Bongartz K., A generalization of a theorem of M. Auslander, Bull. London Math. Soc.21 (1989) 255-256. Zbl0669.16018MR986367
  3. [3] Bongartz K., Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv.63 (1994) 575-611. Zbl0832.16008MR1303228
  4. [4] Bongartz K., On degenerations and extensions of finite dimensional modules, Advances Math.121 (1996) 245-287. Zbl0862.16007MR1402728
  5. [5] Reineke M., Quivers, desingularizations and canonical bases, Preprint, http://www.arxiv.org/absmath.AG/0104284. Zbl1078.16010MR1985731
  6. [6] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, 1984. Zbl0546.16013MR774589
  7. [7] Zwara G., Degenerations of finite dimensional modules are given by extensions, Compositio Math.121 (2000) 205-218. Zbl0957.16007MR1757882
  8. [8] Zwara G., Smooth morphisms of module schemes, Proc. London Math. Soc.84 (2002) 539-558. Zbl1054.16009MR1888422

NotesEmbed ?

top

You must be logged in to post comments.