Unibranch orbit closures in module varieties

Grzegorz Zwara

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 6, page 877-895
  • ISSN: 0012-9593

How to cite

top

Zwara, Grzegorz. "Unibranch orbit closures in module varieties." Annales scientifiques de l'École Normale Supérieure 35.6 (2002): 877-895. <http://eudml.org/doc/82591>.

@article{Zwara2002,
author = {Zwara, Grzegorz},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {finite-dimensional algebras; indecomposable left modules; orbit closures; module varieties},
language = {eng},
number = {6},
pages = {877-895},
publisher = {Elsevier},
title = {Unibranch orbit closures in module varieties},
url = {http://eudml.org/doc/82591},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Zwara, Grzegorz
TI - Unibranch orbit closures in module varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 6
SP - 877
EP - 895
LA - eng
KW - finite-dimensional algebras; indecomposable left modules; orbit closures; module varieties
UR - http://eudml.org/doc/82591
ER -

References

top
  1. [1] Bobiński G., Zwara G., Normality of orbit closures for Dynkin quivers of type An, Manuscr. Math.105 (2001) 103-109. Zbl1031.16012MR1885816
  2. [2] Bongartz K., A generalization of a theorem of M. Auslander, Bull. London Math. Soc.21 (1989) 255-256. Zbl0669.16018MR986367
  3. [3] Bongartz K., Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv.63 (1994) 575-611. Zbl0832.16008MR1303228
  4. [4] Bongartz K., On degenerations and extensions of finite dimensional modules, Advances Math.121 (1996) 245-287. Zbl0862.16007MR1402728
  5. [5] Reineke M., Quivers, desingularizations and canonical bases, Preprint, http://www.arxiv.org/absmath.AG/0104284. Zbl1078.16010MR1985731
  6. [6] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, 1984. Zbl0546.16013MR774589
  7. [7] Zwara G., Degenerations of finite dimensional modules are given by extensions, Compositio Math.121 (2000) 205-218. Zbl0957.16007MR1757882
  8. [8] Zwara G., Smooth morphisms of module schemes, Proc. London Math. Soc.84 (2002) 539-558. Zbl1054.16009MR1888422

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.