Unibranch orbit closures in module varieties
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 6, page 877-895
- ISSN: 0012-9593
Access Full Article
topHow to cite
topReferences
top- [1] Bobiński G., Zwara G., Normality of orbit closures for Dynkin quivers of type An, Manuscr. Math.105 (2001) 103-109. Zbl1031.16012MR1885816
- [2] Bongartz K., A generalization of a theorem of M. Auslander, Bull. London Math. Soc.21 (1989) 255-256. Zbl0669.16018MR986367
- [3] Bongartz K., Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv.63 (1994) 575-611. Zbl0832.16008MR1303228
- [4] Bongartz K., On degenerations and extensions of finite dimensional modules, Advances Math.121 (1996) 245-287. Zbl0862.16007MR1402728
- [5] Reineke M., Quivers, desingularizations and canonical bases, Preprint, http://www.arxiv.org/absmath.AG/0104284. Zbl1078.16010MR1985731
- [6] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, 1984. Zbl0546.16013MR774589
- [7] Zwara G., Degenerations of finite dimensional modules are given by extensions, Compositio Math.121 (2000) 205-218. Zbl0957.16007MR1757882
- [8] Zwara G., Smooth morphisms of module schemes, Proc. London Math. Soc.84 (2002) 539-558. Zbl1054.16009MR1888422