On spin and modularity in conformal field theory
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 1, page 57-112
- ISSN: 0012-9593
Access Full Article
topHow to cite
topKriz, Igor. "On spin and modularity in conformal field theory." Annales scientifiques de l'École Normale Supérieure 36.1 (2003): 57-112. <http://eudml.org/doc/82597>.
@article{Kriz2003,
author = {Kriz, Igor},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Segal's approach},
language = {eng},
number = {1},
pages = {57-112},
publisher = {Elsevier},
title = {On spin and modularity in conformal field theory},
url = {http://eudml.org/doc/82597},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Kriz, Igor
TI - On spin and modularity in conformal field theory
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 1
SP - 57
EP - 112
LA - eng
KW - Segal's approach
UR - http://eudml.org/doc/82597
ER -
References
top- [1] Baranov M.A., Schwarz A.S., Multiloop contribution to string theory, Pisma ZhETP42 (8) (1985) 340, [JETP Lett.42 (1986) 419]. MR875755
- [2] Browder W., Surgery on Simply Connected Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 65, Springer-Verlag, 1972. Zbl0239.57016MR358813
- [3] Deligne P., Le symbole modéré, Inst. Hautes Études Sci. Publ. Math.73 (1991) 147-181. Zbl0749.14011MR1114212
- [4] Deligne P., Letters to the author, 2000–2001.
- [5] Deligne P., Notes on spinors, in: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, AMS, 1999, pp. 99-136. Zbl1170.81380MR1701598
- [6] Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math.36 (1969) 75-108. Zbl0181.48803MR262240
- [7] Di Francesco P., Mathieu P., Senechal D., Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. Zbl0869.53052MR1424041
- [8] Dong C., Li H., Mason G., Twisted representations of vertex operator algebras, Math. Ann.310 (3) (1998) 571-600. Zbl0890.17029MR1615132
- [9] Frenkel I., Vertex algebras and algebraic curves, http://xxx.arXiv.org/ps/math.QA/0007054. MR1849359
- [10] Frenkel I., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, MA, 1988. Zbl0674.17001MR996026
- [11] Friedan D., Notes on string theory and two dimensional conformal field theory, in: Green M., Gross D. (Eds.), Workshop on Unified String Theories, ITP Santa Barbara, World Scientific, Singapore, 1985, pp. 162. Zbl0648.53057MR849106
- [12] Friedan D., Martinec E., Shenker S., Conformal invariance, supersymmetry and string theory, Nucl. Phys. B271 (1986) 93. MR845945
- [13] Giraud, Cohomologie non abélienne, in: Grundlehren der math. Wissensch., Vol. 179, Springer-Verlag. Zbl0226.14011
- [14] Huang Y.Z., Two-dimensional Conformal Geometry and Vertex Operator Algebras, Progress in Mathematics, 148, Birkhäuser, 1997. Zbl0884.17021MR1448404
- [15] Lang S., Elliptic Functions, Graduate Texts in Mathematics, 112, Springer-Verlag, 1987. Zbl0615.14018MR890960
- [16] Pressley A., Segal G., Loop Groups, Oxford Science Publications, Oxford University Press, 1986. Zbl0618.22011MR900587
- [17] Luest D., Theisen S., Lectures on String Theory, Lecture Notes in Mathematics Vol. 346, Springer-Verlag. Zbl0716.53063MR1028064
- [18] Quillen D., Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen.19 (1985) 37-41. Zbl0603.32016MR783704
- [19] Rabin J.M., Super Riemann Surfaces, in: Yau S.T. (Ed.), Mathematical Aspects of String Theory, Advanced Series in Mathematical Physics, 1, World Scientific, 1987. Zbl0667.58010MR915830
- [20] Rosly A.A., Schwarz A.S., Voronov A.A., Geometry of superconformal manifolds, Comm. Math. Phys.119 (1988) 129-152. Zbl0675.58010MR968484
- [21] Segal G., The definition of conformal field theory, preprint. Zbl0657.53060MR2079383
- [22] Simon B., Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series, 35, Cambridge University Press, 1979. Zbl0423.47001MR541149
- [23] Wall C.T.C., Graded Brauer groups, J. Reine Angew. Math.213 (1963/64) 187-199. Zbl0125.01904MR167498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.