On spin and modularity in conformal field theory

Igor Kriz

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 1, page 57-112
  • ISSN: 0012-9593

How to cite


Kriz, Igor. "On spin and modularity in conformal field theory." Annales scientifiques de l'École Normale Supérieure 36.1 (2003): 57-112. <http://eudml.org/doc/82597>.

author = {Kriz, Igor},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Segal's approach},
language = {eng},
number = {1},
pages = {57-112},
publisher = {Elsevier},
title = {On spin and modularity in conformal field theory},
url = {http://eudml.org/doc/82597},
volume = {36},
year = {2003},

AU - Kriz, Igor
TI - On spin and modularity in conformal field theory
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 1
SP - 57
EP - 112
LA - eng
KW - Segal's approach
UR - http://eudml.org/doc/82597
ER -


  1. [1] Baranov M.A., Schwarz A.S., Multiloop contribution to string theory, Pisma ZhETP42 (8) (1985) 340, [JETP Lett.42 (1986) 419]. MR875755
  2. [2] Browder W., Surgery on Simply Connected Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 65, Springer-Verlag, 1972. Zbl0239.57016MR358813
  3. [3] Deligne P., Le symbole modéré, Inst. Hautes Études Sci. Publ. Math.73 (1991) 147-181. Zbl0749.14011MR1114212
  4. [4] Deligne P., Letters to the author, 2000–2001. 
  5. [5] Deligne P., Notes on spinors, in: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, AMS, 1999, pp. 99-136. Zbl1170.81380MR1701598
  6. [6] Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math.36 (1969) 75-108. Zbl0181.48803MR262240
  7. [7] Di Francesco P., Mathieu P., Senechal D., Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. Zbl0869.53052MR1424041
  8. [8] Dong C., Li H., Mason G., Twisted representations of vertex operator algebras, Math. Ann.310 (3) (1998) 571-600. Zbl0890.17029MR1615132
  9. [9] Frenkel I., Vertex algebras and algebraic curves, http://xxx.arXiv.org/ps/math.QA/0007054. MR1849359
  10. [10] Frenkel I., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, MA, 1988. Zbl0674.17001MR996026
  11. [11] Friedan D., Notes on string theory and two dimensional conformal field theory, in: Green M., Gross D. (Eds.), Workshop on Unified String Theories, ITP Santa Barbara, World Scientific, Singapore, 1985, pp. 162. Zbl0648.53057MR849106
  12. [12] Friedan D., Martinec E., Shenker S., Conformal invariance, supersymmetry and string theory, Nucl. Phys. B271 (1986) 93. MR845945
  13. [13] Giraud, Cohomologie non abélienne, in: Grundlehren der math. Wissensch., Vol. 179, Springer-Verlag. Zbl0226.14011
  14. [14] Huang Y.Z., Two-dimensional Conformal Geometry and Vertex Operator Algebras, Progress in Mathematics, 148, Birkhäuser, 1997. Zbl0884.17021MR1448404
  15. [15] Lang S., Elliptic Functions, Graduate Texts in Mathematics, 112, Springer-Verlag, 1987. Zbl0615.14018MR890960
  16. [16] Pressley A., Segal G., Loop Groups, Oxford Science Publications, Oxford University Press, 1986. Zbl0618.22011MR900587
  17. [17] Luest D., Theisen S., Lectures on String Theory, Lecture Notes in Mathematics Vol. 346, Springer-Verlag. Zbl0716.53063MR1028064
  18. [18] Quillen D., Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen.19 (1985) 37-41. Zbl0603.32016MR783704
  19. [19] Rabin J.M., Super Riemann Surfaces, in: Yau S.T. (Ed.), Mathematical Aspects of String Theory, Advanced Series in Mathematical Physics, 1, World Scientific, 1987. Zbl0667.58010MR915830
  20. [20] Rosly A.A., Schwarz A.S., Voronov A.A., Geometry of superconformal manifolds, Comm. Math. Phys.119 (1988) 129-152. Zbl0675.58010MR968484
  21. [21] Segal G., The definition of conformal field theory, preprint. Zbl0657.53060MR2079383
  22. [22] Simon B., Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series, 35, Cambridge University Press, 1979. Zbl0423.47001MR541149
  23. [23] Wall C.T.C., Graded Brauer groups, J. Reine Angew. Math.213 (1963/64) 187-199. Zbl0125.01904MR167498

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.