On approximation of smooth submanifolds by nonsingular real algebraic subvarieties

Jacek Bochnak; Wojciech Kucharz

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 5, page 685-690
  • ISSN: 0012-9593

How to cite

top

Bochnak, Jacek, and Kucharz, Wojciech. "On approximation of smooth submanifolds by nonsingular real algebraic subvarieties." Annales scientifiques de l'École Normale Supérieure 36.5 (2003): 685-690. <http://eudml.org/doc/82615>.

@article{Bochnak2003,
author = {Bochnak, Jacek, Kucharz, Wojciech},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic approximation},
language = {eng},
number = {5},
pages = {685-690},
publisher = {Elsevier},
title = {On approximation of smooth submanifolds by nonsingular real algebraic subvarieties},
url = {http://eudml.org/doc/82615},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Bochnak, Jacek
AU - Kucharz, Wojciech
TI - On approximation of smooth submanifolds by nonsingular real algebraic subvarieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 5
SP - 685
EP - 690
LA - eng
KW - algebraic approximation
UR - http://eudml.org/doc/82615
ER -

References

top
  1. [1] Abraham R., Robbin J., Transversal Mappings and Flows, Benjamin, New York, 1967. Zbl0171.44404MR240836
  2. [2] Akbulut S., King H., Polynomial equations of immersed surfaces, Pacific J. Math.131 (1988) 209-217. Zbl0686.14030MR922214
  3. [3] Akbulut S., King H., Topology of Real Algebraic Sets, in: Math. Sci. Res. Inst. Publ., vol. 25, Springer, New York/Berlin/Heidelberg, 1992. Zbl0808.14045MR1225577
  4. [4] Akbulut S., King H., Private communication. 
  5. [5] Bochnak J., Coste M., Roy M.-F., Real Algebraic Geometry, in: Ergeb. Math. Grenzgeb. (3), vol. 36, Springer, Berlin/Heidelberg/New York, 1998. Zbl0912.14023MR1659509
  6. [6] Bochnak J., Kucharz W., K-theory of real algebraic surfaces and threefolds, Math. Proc. Cambridge Philos. Soc.106 (1989) 471-480. Zbl0707.14006MR1010372
  7. [7] Bochnak J., Kucharz W., On homology classes represented by real algebraic varieties, in: Banach Center Publ., vol. 44, Warsaw, 1998, pp. 21-35. Zbl0915.14033MR1677394
  8. [8] Borel A., Haefliger A., La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France89 (1961) 461-513. Zbl0102.38502MR149503
  9. [9] Conner P.E., Differentiable Periodic Maps, Lecture Notes in Math., vol. 738, Springer, Berlin/Heidelberg/New York, 1979. Zbl0417.57019MR548463
  10. [10] Hironaka H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math.79 (1964) 109-326. Zbl0122.38603MR199184
  11. [11] Hirsch M., Differential Topology, Grad. Texts in Math., vol. 33, Springer, New York/Berlin/Heidelberg, 1997. Zbl0356.57001MR1336822
  12. [12] Lamotke K., The topology of complex projective varieties after S. Lefschetz, Topology20 (1981) 15-51. Zbl0445.14010MR592569
  13. [13] Milnor J., Stasheff J., Characteristic Classes, Ann. of Math. Stud., vol. 76, Princeton Univ. Press, Princeton, 1974. Zbl0298.57008MR440554
  14. [14] Shafarevich I.R., Basic Algebraic Geometry 1, Springer, Berlin, 1994. Zbl0797.14001MR1328833
  15. [15] Shafarevich I.R., Basic Algebraic Geometry 2, Springer, Berlin, 1994. Zbl0797.14002MR1328834

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.