On the de Rham–Witt complex in mixed characteristic

Lars Hesselholt; Ib Madsen

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 1, page 1-43
  • ISSN: 0012-9593

How to cite

top

Hesselholt, Lars, and Madsen, Ib. "On the de Rham–Witt complex in mixed characteristic." Annales scientifiques de l'École Normale Supérieure 37.1 (2004): 1-43. <http://eudml.org/doc/82626>.

@article{Hesselholt2004,
author = {Hesselholt, Lars, Madsen, Ib},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {topological cyclic homology; de Rham-Witt complex; smooth algebras over discrete valuation rings},
language = {eng},
number = {1},
pages = {1-43},
publisher = {Elsevier},
title = {On the de Rham–Witt complex in mixed characteristic},
url = {http://eudml.org/doc/82626},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Hesselholt, Lars
AU - Madsen, Ib
TI - On the de Rham–Witt complex in mixed characteristic
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 1
SP - 1
EP - 43
LA - eng
KW - topological cyclic homology; de Rham-Witt complex; smooth algebras over discrete valuation rings
UR - http://eudml.org/doc/82626
ER -

References

top
  1. [1] Bloch S., Algebraic K-theory and crystalline cohomology, Inst. Hautes Études Sci. Publ. Math.47 (1977) 187-268. Zbl0388.14010MR488288
  2. [2] Bökstedt M., Hsiang W.-C., Madsen I., The cyclotomic trace and algebraic K-theory of spaces, Invent. Math.111 (1993) 465-540. Zbl0804.55004MR1202133
  3. [3] Bourbaki N., Commutative Algebra, Chapters 1–7, Elements of Mathematics, Springer-Verlag, Berlin, 1998, Translated from the French. Reprint of the 1989 English translation. Zbl0666.13001MR979760
  4. [4] Geisser T., Hesselholt L., The de Rham–Witt complex and p-adic vanishing cycles, Preprint, 2003. Zbl1087.19002MR2169041
  5. [5] Geisser T., Hesselholt L., Topological cyclic homology of schemes, in: K-Theory (Seattle, 1997), Proc. Symp. Pure Math., vol. 67, 1999, pp. 41-87. Zbl0953.19001MR1743237
  6. [6] Grothendieck A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas (Quatrième Partie), Inst. Hautes Études Sci. Publ. Math.32 (1967). Zbl0153.22301MR238860
  7. [7] Grothendieck A., Cohomologie χ-adique et fonctions L, Lecture Notes in Math., vol. 589, Springer-Verlag, 1977. 
  8. [8] Hesselholt L., On the p-typical curves in Quillen's K-theory, Acta Math.177 (1997) 1-53. Zbl0892.19003MR1417085
  9. [9] Hesselholt L., Madsen I., On the K-theory of local fields, Ann. of Math.158 (2003) 1-113. Zbl1033.19002MR1998478
  10. [10] Hesselholt L., Madsen I., On the K-theory of finite algebras over Witt vectors of perfect fields, Topology36 (1997) 29-102. Zbl0866.55002MR1410465
  11. [11] Hovey M., Shipley B., Smith J., Symmetric spectra, J. Amer. Math. Soc.13 (2000) 149-208. Zbl0931.55006MR1695653
  12. [12] Hyodo O., Kato K., Semi-stable reduction and crystalline cohomology with logarithmic poles, in: Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, 1994, pp. 221-268. Zbl0852.14004MR1293974
  13. [13] Illusie L., Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup.12 (4) (1979) 501-661. Zbl0436.14007MR565469
  14. [14] Kato K., Logarithmic structures of Fontaine–Illusie, in: Algebraic Analysis, Geometry, and Number Theory, Proceedings of the JAMI Inaugural Conference (Baltimore, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191-224. Zbl0776.14004MR1463703
  15. [15] Langer A., Zink T., De Rham–Witt cohomology for a proper and smooth morphism, Preprint 2001, Universität Bielefeld. Zbl1100.14506MR2055710
  16. [16] Lewis L.G., May J.P., Steinberger M., Equivariant Stable Homotopy Theory, Lecture Notes in Math., vol. 1213, Springer-Verlag, 1986. Zbl0611.55001MR866482
  17. [17] Loday J.-L., Cyclic Homology, Grundlehren der mathematischen Wissenschaften, vol. 301, Springer-Verlag, 1992. Zbl0780.18009MR1217970
  18. [18] MacLane S., Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1971. Zbl0232.18001MR354798
  19. [19] Madsen I., Algebraic K-theory and traces, in: Current Developments in Mathematics, 1995, International Press, Cambridge, MA, 1996, pp. 191-321. Zbl0876.55004MR1474979
  20. [20] Mandell M.A., May J.P., Equivariant orthogonal spectra and S-modules, Mem. Amer. Math. Soc.159 (2002). Zbl1025.55002MR1922205
  21. [21] Matsumura H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, 1986. Zbl0603.13001MR879273
  22. [22] May J.P., Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992, Reprint of the 1967 original. Zbl0769.55001MR1206474
  23. [23] Mumford D., Lectures on Curves on an Algebraic Surface, Annals of Mathematics Studies, vol. 59, Princeton University Press, Princeton, NJ, 1966. Zbl0187.42701MR209285
  24. [24] Rognes J., Topological cyclic homology of the integers at two, J. Pure Appl. Algebra134 (1999) 219-286. Zbl0929.19003MR1663390
  25. [25] tom Dieck T., Orbittypen und äquivariante Homologie II, Arch. Math. (Basel)26 (1975) 650-662. Zbl0334.55004MR436177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.