On the de Rham–Witt complex in mixed characteristic

Lars Hesselholt; Ib Madsen

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 1, page 1-43
  • ISSN: 0012-9593

How to cite

top

Hesselholt, Lars, and Madsen, Ib. "On the de Rham–Witt complex in mixed characteristic." Annales scientifiques de l'École Normale Supérieure 37.1 (2004): 1-43. <http://eudml.org/doc/82626>.

@article{Hesselholt2004,
author = {Hesselholt, Lars, Madsen, Ib},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {topological cyclic homology; de Rham-Witt complex; smooth algebras over discrete valuation rings},
language = {eng},
number = {1},
pages = {1-43},
publisher = {Elsevier},
title = {On the de Rham–Witt complex in mixed characteristic},
url = {http://eudml.org/doc/82626},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Hesselholt, Lars
AU - Madsen, Ib
TI - On the de Rham–Witt complex in mixed characteristic
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 1
SP - 1
EP - 43
LA - eng
KW - topological cyclic homology; de Rham-Witt complex; smooth algebras over discrete valuation rings
UR - http://eudml.org/doc/82626
ER -

References

top
  1. [1] Bloch S., Algebraic K-theory and crystalline cohomology, Inst. Hautes Études Sci. Publ. Math.47 (1977) 187-268. Zbl0388.14010MR488288
  2. [2] Bökstedt M., Hsiang W.-C., Madsen I., The cyclotomic trace and algebraic K-theory of spaces, Invent. Math.111 (1993) 465-540. Zbl0804.55004MR1202133
  3. [3] Bourbaki N., Commutative Algebra, Chapters 1–7, Elements of Mathematics, Springer-Verlag, Berlin, 1998, Translated from the French. Reprint of the 1989 English translation. Zbl0666.13001MR979760
  4. [4] Geisser T., Hesselholt L., The de Rham–Witt complex and p-adic vanishing cycles, Preprint, 2003. Zbl1087.19002MR2169041
  5. [5] Geisser T., Hesselholt L., Topological cyclic homology of schemes, in: K-Theory (Seattle, 1997), Proc. Symp. Pure Math., vol. 67, 1999, pp. 41-87. Zbl0953.19001MR1743237
  6. [6] Grothendieck A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas (Quatrième Partie), Inst. Hautes Études Sci. Publ. Math.32 (1967). Zbl0153.22301MR238860
  7. [7] Grothendieck A., Cohomologie χ-adique et fonctions L, Lecture Notes in Math., vol. 589, Springer-Verlag, 1977. 
  8. [8] Hesselholt L., On the p-typical curves in Quillen's K-theory, Acta Math.177 (1997) 1-53. Zbl0892.19003MR1417085
  9. [9] Hesselholt L., Madsen I., On the K-theory of local fields, Ann. of Math.158 (2003) 1-113. Zbl1033.19002MR1998478
  10. [10] Hesselholt L., Madsen I., On the K-theory of finite algebras over Witt vectors of perfect fields, Topology36 (1997) 29-102. Zbl0866.55002MR1410465
  11. [11] Hovey M., Shipley B., Smith J., Symmetric spectra, J. Amer. Math. Soc.13 (2000) 149-208. Zbl0931.55006MR1695653
  12. [12] Hyodo O., Kato K., Semi-stable reduction and crystalline cohomology with logarithmic poles, in: Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, 1994, pp. 221-268. Zbl0852.14004MR1293974
  13. [13] Illusie L., Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup.12 (4) (1979) 501-661. Zbl0436.14007MR565469
  14. [14] Kato K., Logarithmic structures of Fontaine–Illusie, in: Algebraic Analysis, Geometry, and Number Theory, Proceedings of the JAMI Inaugural Conference (Baltimore, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191-224. Zbl0776.14004MR1463703
  15. [15] Langer A., Zink T., De Rham–Witt cohomology for a proper and smooth morphism, Preprint 2001, Universität Bielefeld. Zbl1100.14506MR2055710
  16. [16] Lewis L.G., May J.P., Steinberger M., Equivariant Stable Homotopy Theory, Lecture Notes in Math., vol. 1213, Springer-Verlag, 1986. Zbl0611.55001MR866482
  17. [17] Loday J.-L., Cyclic Homology, Grundlehren der mathematischen Wissenschaften, vol. 301, Springer-Verlag, 1992. Zbl0780.18009MR1217970
  18. [18] MacLane S., Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1971. Zbl0232.18001MR354798
  19. [19] Madsen I., Algebraic K-theory and traces, in: Current Developments in Mathematics, 1995, International Press, Cambridge, MA, 1996, pp. 191-321. Zbl0876.55004MR1474979
  20. [20] Mandell M.A., May J.P., Equivariant orthogonal spectra and S-modules, Mem. Amer. Math. Soc.159 (2002). Zbl1025.55002MR1922205
  21. [21] Matsumura H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, 1986. Zbl0603.13001MR879273
  22. [22] May J.P., Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992, Reprint of the 1967 original. Zbl0769.55001MR1206474
  23. [23] Mumford D., Lectures on Curves on an Algebraic Surface, Annals of Mathematics Studies, vol. 59, Princeton University Press, Princeton, NJ, 1966. Zbl0187.42701MR209285
  24. [24] Rognes J., Topological cyclic homology of the integers at two, J. Pure Appl. Algebra134 (1999) 219-286. Zbl0929.19003MR1663390
  25. [25] tom Dieck T., Orbittypen und äquivariante Homologie II, Arch. Math. (Basel)26 (1975) 650-662. Zbl0334.55004MR436177

NotesEmbed ?

top

You must be logged in to post comments.