Travaux de Zink

William Messing

Séminaire Bourbaki (2005-2006)

  • Volume: 48, page 341-364
  • ISSN: 0303-1179

Abstract

top
The diverse Dieudonné theories have as their common goal the classification of formal groups and p -divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, W ( R ) , equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of his theory as well as sketch several proofs.

How to cite

top

Messing, William. "Travaux de Zink." Séminaire Bourbaki 48 (2005-2006): 341-364. <http://eudml.org/doc/252168>.

@article{Messing2005-2006,
abstract = {The diverse Dieudonné theories have as their common goal the classification of formal groups and $p$-divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, $W(R)$, equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of his theory as well as sketch several proofs.},
author = {Messing, William},
journal = {Séminaire Bourbaki},
keywords = {cristaux de Dieudonné; étalages; groupes formels; groupes $p$-divisibles},
language = {eng},
pages = {341-364},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Travaux de Zink},
url = {http://eudml.org/doc/252168},
volume = {48},
year = {2005-2006},
}

TY - JOUR
AU - Messing, William
TI - Travaux de Zink
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 341
EP - 364
AB - The diverse Dieudonné theories have as their common goal the classification of formal groups and $p$-divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, $W(R)$, equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of his theory as well as sketch several proofs.
LA - eng
KW - cristaux de Dieudonné; étalages; groupes formels; groupes $p$-divisibles
UR - http://eudml.org/doc/252168
ER -

References

top
  1. [Ber] P. Berthelot – Cohomologie cristalline des schémas de caractéristique p g t ; 0 , Lect. Notes in Math., vol. 407, Springer-Verlag, Berlin, 1974. Zbl0298.14012MR384804
  2. [BBM] P. Berthelot, L. Breen & W. Messing – Théorie de Dieudonné cristalline II, Lect. Notes in Math., vol. 930, Springer-Verlag, Berlin, 1982. Zbl0516.14015MR667344
  3. [BM1] P. Berthelot & W. Messing – “Théorie de Dieudonné cristalline I”, in Journées de Géométrie Algébrique de Rennes I, Astérisque, vol. 63, Soc. Math. France, Paris, 1979, p. 17–37. Zbl0414.14014MR563458
  4. [BM2] —, “Théorie de Dieudonné cristalline III. Théorèmes d’équivalence et de pleine fidélité”, in The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser, Boston, 1990, p. 173–247. Zbl0753.14041
  5. [Bour] N. Bourbaki – Algèbre commutative, chapitres 8 et 9, Masson, 1983. MR722608
  6. [Br] C. Breuil – “Groupes p -divisibles, groupes finis et modules filtrés”, Ann. of Math. (2) 152 (2000), no. 2, p. 489–549. Zbl1042.14018MR1804530
  7. [Car1] P. Cartier –“Groupes formels associés aux anneaux de Witt généralisés”, C. R. Acad. Sci. Paris265 (1967), p. 50–52. Zbl0168.27501MR218361
  8. [Car2] —, “Modules associés à un groupe formel commutatif. Courbes typiques”, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), p. A129–A132. Zbl0168.27502
  9. [Car3] —, “Seminar at the Inst. Hautes Études Sci.”, Spring 1972. 
  10. [Dem] M. Demazure – Lectures on p -divisible groups, Lect. Notes in Math., vol. 302, Springer-Verlag, Berlin, 1972. Zbl0247.14010MR344261
  11. [Fon1] J.-M. Fontaine – Groupes p -divisibles sur les corps locaux, Astérisque, vol. 47-48, Soc. Math. France, Paris, 1977. Zbl0377.14009MR498610
  12. [Fon2] —, “Groupes finis commutatifs sur les vecteurs de Witt”, C. R. Acad. Sci. Paris 280 (1975), p. A1423–A1425. Zbl0331.14023MR374153
  13. [Gr1] A. Grothendieck – “Groupes de Barsotti-Tate et cristaux”, in Actes du Congrès International des Mathématiciens (Nice 1970) I, Gauthier-Villars, Paris, 1971, p. 431–436. Zbl0244.14016MR578496
  14. [Gr2] —, Groupes de Barsotti-Tate et cristaux de Dieudonné, Sém. Math. Sup., vol. 45, Presses de l’Université de Montréal, Montréal, 1974. Zbl0331.14021MR417192
  15. [Gr3] —, Groupes de monodromie en géométrie algébrique I, Lect. Notes in Math., vol. 288, Springer-Verlag, Berlin, 1972. MR354656
  16. [Haz] M. Hazewinkel – Formal groups and applications, Pure Appl. Math., vol. 78, Academic Press Inc., New York, 1978. Zbl0454.14020MR506881
  17. [HM] L. Hesselholt & I. Madsen – “On the De Rham-Witt complex in mixed characteristic”, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, p. 1–43. Zbl1062.19003MR2050204
  18. [Ill1] L. Illusie – “Complexe de de Rham-Witt et cohomologie cristalline”, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, p. 501–661. Zbl0436.14007MR565469
  19. [Ill2] —, “Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck)”, in Sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque, vol. 127, 1985, p. 151–198. Zbl1182.14050
  20. [Ill3] —, Complexe cotangent et déformations I, Lect. Notes in Math., vol. 239, Springer-Verlag, Berlin, 1971. Zbl0224.13014MR491680
  21. [Ill4] —, Complexe cotangent et déformations II, Lect. Notes in Math., vol. 283, Springer-Verlag, Berlin, 1972. Zbl0238.13017MR491681
  22. [dJ1] A. J. de Jong – “Finite locally free group schemes in characteristic p and Dieudonné modules”, Invent. Math. 114 (1993), no. 1, p. 89–137. Zbl0812.14030MR1235021
  23. [dJ2] —, “Crystalline Dieudonné module theory via formal and rigid geometry”, Publ. Math. Inst. Hautes Études Sci. (1995), no. 82, p. 5–96 (1996). Zbl0864.14009MR1383213
  24. [dJM] A. J. de Jong & W. Messing – “Crystalline Dieudonné theory over excellent schemes”, Bull. Soc. Math. France 127 (1999), no. 2, p. 333–348. Zbl0963.14008MR1708635
  25. [dJO] A. J. de Jong & F. Oort – “Purity of the stratification by Newton polygons”, J. Amer. Math. Soc. 13 (2000), no. 1, p. 209–241. Zbl0954.14007MR1703336
  26. [K] M. Kisin – “Crystalline representations and F -crystals”, in Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser, Boston, 2006, p. 459–496. Zbl1184.11052MR2263197
  27. [LZ1] A. Langer & T. Zink – “De Rham-Witt cohomology for a proper and smooth morphism”, J. Inst. Math. Jussieu 3 (2004), no. 2, p. 231–314. Zbl1100.14506MR2055710
  28. [LZ2] —, “De Rham-Witt cohomology and displays”, available on Zink’s web page. 
  29. [L1] E. Lau – “Displays and formal p -divisible groups”, submitted manuscript. Zbl1186.14048
  30. [L2] —, “Dieudonné displays and duality”, manuscript, April 10, 2007. 
  31. [Laz] M. Lazard – Commutative formal groups, Lect. Notes in Math., vol. 443, Springer-Verlag, Berlin, 1975. Zbl0304.14027MR393050
  32. [MM] B. Mazur & W. Messing – Universal extensions and one dimensional crystalline cohomology, Lect. Notes in Math., vol. 370, Springer-Verlag, Berlin, 1974. Zbl0301.14016MR374150
  33. [M] W. Messing – The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lect. Notes in Math., vol. 264, Springer-Verlag, Berlin, 1972. Zbl0243.14013MR347836
  34. [Mu] D. Mumford – “Bi-extensions of formal groups”, in Algebraic Geometry (Bombay, 1968), Oxford Univ. Press, London, 1969, p. 307–322. Zbl0216.33101MR257089
  35. [N] P. Norman – “An algorithm for computing local moduli of abelian varieties”, Ann. Math. (2) 101 (1975), p. 499–509. Zbl0309.14031MR389928
  36. [Ser] J.-P. Serre – “Groupes p -divisibles (d’après J. Tate)”, in Séminaire Bourbaki 1966/67, Collection Hors Série, vol. 10, Soc. Math. France, Paris, 1995, exp. no. 318, p. 73–86. Zbl0197.17201MR1610452
  37. [Ta] J. T. Tate – “ p - d i v i s i b l e g r o u p s . ”, in Proceedings of a Conference on local fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158–183. Zbl0157.27601MR231827
  38. [V] A. Vasiu – “Crystalline boundedness principle”, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, p. 245–300. Zbl1143.14037MR2245533
  39. [Z1] T. Zink – Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik, vol. 68, Teubner Verlagsgesellschaft, Leipzig, 1984. Zbl0578.14039MR767090
  40. [Z2] —, “Cartiertheorie über perfecten Ringen I, II”, preprints Akad. Wissenschaften Berlin, 1986. 
  41. [Z3] —, “A Dieudonné theory for p -divisible groups”, in Class field theory—its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, p. 139–160. Zbl1052.14048MR1846456
  42. [Z4] —, “Windows for displays of p -divisible groups”, in Moduli of abelian varieties (Texel Island 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, p. 491–518. Zbl1099.14036MR1827031
  43. [Z5] —, “The display of a formal p -divisible group”, in Cohomologies p -adiques et applications arithmétiques I, Astérisque, vol. 278, 2002, p. 127–248. Zbl1008.14008MR1922825
  44. [Z6] —, “Lectures on displays, formal groups, ...”, Lectures at Université Paris XIII, March 2006. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.