Travaux de Zink
Séminaire Bourbaki (2005-2006)
- Volume: 48, page 341-364
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topMessing, William. "Travaux de Zink." Séminaire Bourbaki 48 (2005-2006): 341-364. <http://eudml.org/doc/252168>.
@article{Messing2005-2006,
abstract = {The diverse Dieudonné theories have as their common goal the classification of formal groups and $p$-divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, $W(R)$, equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of his theory as well as sketch several proofs.},
author = {Messing, William},
journal = {Séminaire Bourbaki},
keywords = {cristaux de Dieudonné; étalages; groupes formels; groupes $p$-divisibles},
language = {eng},
pages = {341-364},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Travaux de Zink},
url = {http://eudml.org/doc/252168},
volume = {48},
year = {2005-2006},
}
TY - JOUR
AU - Messing, William
TI - Travaux de Zink
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 341
EP - 364
AB - The diverse Dieudonné theories have as their common goal the classification of formal groups and $p$-divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, $W(R)$, equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of his theory as well as sketch several proofs.
LA - eng
KW - cristaux de Dieudonné; étalages; groupes formels; groupes $p$-divisibles
UR - http://eudml.org/doc/252168
ER -
References
top- [Ber] P. Berthelot – Cohomologie cristalline des schémas de caractéristique , Lect. Notes in Math., vol. 407, Springer-Verlag, Berlin, 1974. Zbl0298.14012MR384804
- [BBM] P. Berthelot, L. Breen & W. Messing – Théorie de Dieudonné cristalline II, Lect. Notes in Math., vol. 930, Springer-Verlag, Berlin, 1982. Zbl0516.14015MR667344
- [BM1] P. Berthelot & W. Messing – “Théorie de Dieudonné cristalline I”, in Journées de Géométrie Algébrique de Rennes I, Astérisque, vol. 63, Soc. Math. France, Paris, 1979, p. 17–37. Zbl0414.14014MR563458
- [BM2] —, “Théorie de Dieudonné cristalline III. Théorèmes d’équivalence et de pleine fidélité”, in The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser, Boston, 1990, p. 173–247. Zbl0753.14041
- [Bour] N. Bourbaki – Algèbre commutative, chapitres 8 et 9, Masson, 1983. MR722608
- [Br] C. Breuil – “Groupes -divisibles, groupes finis et modules filtrés”, Ann. of Math. (2) 152 (2000), no. 2, p. 489–549. Zbl1042.14018MR1804530
- [Car1] P. Cartier –“Groupes formels associés aux anneaux de Witt généralisés”, C. R. Acad. Sci. Paris265 (1967), p. 50–52. Zbl0168.27501MR218361
- [Car2] —, “Modules associés à un groupe formel commutatif. Courbes typiques”, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), p. A129–A132. Zbl0168.27502
- [Car3] —, “Seminar at the Inst. Hautes Études Sci.”, Spring 1972.
- [Dem] M. Demazure – Lectures on -divisible groups, Lect. Notes in Math., vol. 302, Springer-Verlag, Berlin, 1972. Zbl0247.14010MR344261
- [Fon1] J.-M. Fontaine – Groupes -divisibles sur les corps locaux, Astérisque, vol. 47-48, Soc. Math. France, Paris, 1977. Zbl0377.14009MR498610
- [Fon2] —, “Groupes finis commutatifs sur les vecteurs de Witt”, C. R. Acad. Sci. Paris 280 (1975), p. A1423–A1425. Zbl0331.14023MR374153
- [Gr1] A. Grothendieck – “Groupes de Barsotti-Tate et cristaux”, in Actes du Congrès International des Mathématiciens (Nice 1970) I, Gauthier-Villars, Paris, 1971, p. 431–436. Zbl0244.14016MR578496
- [Gr2] —, Groupes de Barsotti-Tate et cristaux de Dieudonné, Sém. Math. Sup., vol. 45, Presses de l’Université de Montréal, Montréal, 1974. Zbl0331.14021MR417192
- [Gr3] —, Groupes de monodromie en géométrie algébrique I, Lect. Notes in Math., vol. 288, Springer-Verlag, Berlin, 1972. MR354656
- [Haz] M. Hazewinkel – Formal groups and applications, Pure Appl. Math., vol. 78, Academic Press Inc., New York, 1978. Zbl0454.14020MR506881
- [HM] L. Hesselholt & I. Madsen – “On the De Rham-Witt complex in mixed characteristic”, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, p. 1–43. Zbl1062.19003MR2050204
- [Ill1] L. Illusie – “Complexe de de Rham-Witt et cohomologie cristalline”, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, p. 501–661. Zbl0436.14007MR565469
- [Ill2] —, “Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck)”, in Sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque, vol. 127, 1985, p. 151–198. Zbl1182.14050
- [Ill3] —, Complexe cotangent et déformations I, Lect. Notes in Math., vol. 239, Springer-Verlag, Berlin, 1971. Zbl0224.13014MR491680
- [Ill4] —, Complexe cotangent et déformations II, Lect. Notes in Math., vol. 283, Springer-Verlag, Berlin, 1972. Zbl0238.13017MR491681
- [dJ1] A. J. de Jong – “Finite locally free group schemes in characteristic and Dieudonné modules”, Invent. Math. 114 (1993), no. 1, p. 89–137. Zbl0812.14030MR1235021
- [dJ2] —, “Crystalline Dieudonné module theory via formal and rigid geometry”, Publ. Math. Inst. Hautes Études Sci. (1995), no. 82, p. 5–96 (1996). Zbl0864.14009MR1383213
- [dJM] A. J. de Jong & W. Messing – “Crystalline Dieudonné theory over excellent schemes”, Bull. Soc. Math. France 127 (1999), no. 2, p. 333–348. Zbl0963.14008MR1708635
- [dJO] A. J. de Jong & F. Oort – “Purity of the stratification by Newton polygons”, J. Amer. Math. Soc. 13 (2000), no. 1, p. 209–241. Zbl0954.14007MR1703336
- [K] M. Kisin – “Crystalline representations and -crystals”, in Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser, Boston, 2006, p. 459–496. Zbl1184.11052MR2263197
- [LZ1] A. Langer & T. Zink – “De Rham-Witt cohomology for a proper and smooth morphism”, J. Inst. Math. Jussieu 3 (2004), no. 2, p. 231–314. Zbl1100.14506MR2055710
- [LZ2] —, “De Rham-Witt cohomology and displays”, available on Zink’s web page.
- [L1] E. Lau – “Displays and formal -divisible groups”, submitted manuscript. Zbl1186.14048
- [L2] —, “Dieudonné displays and duality”, manuscript, April 10, 2007.
- [Laz] M. Lazard – Commutative formal groups, Lect. Notes in Math., vol. 443, Springer-Verlag, Berlin, 1975. Zbl0304.14027MR393050
- [MM] B. Mazur & W. Messing – Universal extensions and one dimensional crystalline cohomology, Lect. Notes in Math., vol. 370, Springer-Verlag, Berlin, 1974. Zbl0301.14016MR374150
- [M] W. Messing – The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lect. Notes in Math., vol. 264, Springer-Verlag, Berlin, 1972. Zbl0243.14013MR347836
- [Mu] D. Mumford – “Bi-extensions of formal groups”, in Algebraic Geometry (Bombay, 1968), Oxford Univ. Press, London, 1969, p. 307–322. Zbl0216.33101MR257089
- [N] P. Norman – “An algorithm for computing local moduli of abelian varieties”, Ann. Math. (2) 101 (1975), p. 499–509. Zbl0309.14031MR389928
- [Ser] J.-P. Serre – “Groupes -divisibles (d’après J. Tate)”, in Séminaire Bourbaki 1966/67, Collection Hors Série, vol. 10, Soc. Math. France, Paris, 1995, exp. no. 318, p. 73–86. Zbl0197.17201MR1610452
- [Ta] J. T. Tate – “”, in Proceedings of a Conference on local fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158–183. Zbl0157.27601MR231827
- [V] A. Vasiu – “Crystalline boundedness principle”, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, p. 245–300. Zbl1143.14037MR2245533
- [Z1] T. Zink – Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik, vol. 68, Teubner Verlagsgesellschaft, Leipzig, 1984. Zbl0578.14039MR767090
- [Z2] —, “Cartiertheorie über perfecten Ringen I, II”, preprints Akad. Wissenschaften Berlin, 1986.
- [Z3] —, “A Dieudonné theory for -divisible groups”, in Class field theory—its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, p. 139–160. Zbl1052.14048MR1846456
- [Z4] —, “Windows for displays of -divisible groups”, in Moduli of abelian varieties (Texel Island 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, p. 491–518. Zbl1099.14036MR1827031
- [Z5] —, “The display of a formal -divisible group”, in Cohomologies -adiques et applications arithmétiques I, Astérisque, vol. 278, 2002, p. 127–248. Zbl1008.14008MR1922825
- [Z6] —, “Lectures on displays, formal groups, ...”, Lectures at Université Paris XIII, March 2006.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.