A new family of surfaces with p g = 0 and K 2 = 3

Margarida Mendes Lopes; Rita Pardini

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 4, page 507-531
  • ISSN: 0012-9593

How to cite

top

Mendes Lopes, Margarida, and Pardini, Rita. "A new family of surfaces with ${p}_{g}=0$ and ${K}^{2}=3$." Annales scientifiques de l'École Normale Supérieure 37.4 (2004): 507-531. <http://eudml.org/doc/82638>.

@article{MendesLopes2004,
author = {Mendes Lopes, Margarida, Pardini, Rita},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {surfaces of general type; Enriques surfaces with nodes; moduli},
language = {eng},
number = {4},
pages = {507-531},
publisher = {Elsevier},
title = {A new family of surfaces with $\{p\}_\{g\}=0$ and $\{K\}^\{2\}=3$},
url = {http://eudml.org/doc/82638},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Mendes Lopes, Margarida
AU - Pardini, Rita
TI - A new family of surfaces with ${p}_{g}=0$ and ${K}^{2}=3$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 4
SP - 507
EP - 531
LA - eng
KW - surfaces of general type; Enriques surfaces with nodes; moduli
UR - http://eudml.org/doc/82638
ER -

References

top
  1. [1] Barth W., Peters C., Van de Ven A., Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4, Springer-Verlag, Berlin, 1984. Zbl0718.14023MR749574
  2. [2] Beauville A., Sur le nombre maximum de points doubles d’une surface dans P 3 μ 5 ) = 31 ) , in: Journées de Géométrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn – Germantown, Md., 1980, pp. 207-215. Zbl0445.14016MR605342
  3. [3] Burniat P., Sur les surfaces de genre P 12 g t ; 1 , Ann. Mat. Pura Appl. (4)71 (1966). Zbl0144.20203MR206810
  4. [4] Burns D.M., Wahl J.M., Local contributions to global deformations of surfaces, Invent. Math.26 (1974) 67-88. Zbl0288.14010MR349675
  5. [5] Catanese F., Singular bidouble covers and the construction of interesting algebraic surfaces, in: Algebraic Geometry: Hirzebruch 70, Contemporary Mathematics, vol. 241, American Mathematical Society, 1999, pp. 97-120. Zbl0964.14012MR1718139
  6. [6] Catanese F., Debarre O., Surfaces with K 2 = 2 , p g = 1 , q = 0 , J. Reine Angew. Math.395 (1989) 1-55. Zbl0658.14016MR983058
  7. [7] Cossec F., Projective models of Enriques Surfaces, Math. Ann.265 (1983) 283-334. Zbl0501.14021MR721398
  8. [8] Cossec F., Dolgachev I., Enriques Surfaces I, Progress in Mathematics, vol. 76, Birkhäuser, 1989. Zbl0665.14017MR986969
  9. [9] Dolgachev I., Mendes Lopes M., Pardini R., Rational surfaces with many nodes, Compositio Math.132 (3) (2002) 349-363. Zbl1059.14050MR1918136
  10. [10] Grothendieck A., Fondements de la géométrie algébrique, exposés 232, 236, collected Bourbaki talks, Paris, 1962. Zbl0239.14001
  11. [11] Inoue M., Some new surfaces of general type, Tokyo J. Math.17 (2) (1994) 295-319. Zbl0836.14020MR1305801
  12. [12] Keum J.H., Some new surfaces of general type with p g = 0 , Preprint, 1988. 
  13. [13] van Lint J.H., Introduction to Coding Theory, Graduate Texts in Mathematics, vol. 86, Springer-Verlag, Berlin, 1992. Zbl0747.94018MR1217490
  14. [14] Manetti M., Degeneration of algebraic surfaces and applications to moduli problems, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, 1996. 
  15. [15] Mendes Lopes M., Pardini R., The bicanonical map of surfaces with p g = 0 and K 2 7 , Bull. London Math. Soc.33 (2001) 265-274. Zbl1075.14514MR1817764
  16. [16] Mendes Lopes M., Pardini R., A connected component of the moduli space of surfaces of general type with p g = 0 , Topology40 (5) (2001) 977-991. Zbl1072.14522MR1860538
  17. [17] Mendes Lopes M., Pardini R., Enriques surfaces with eight nodes, Math. Z.241 (2002) 673-683. Zbl1012.14013MR1942235
  18. [18] Mendes Lopes M., Pardini R., The bicanonical map of surfaces with p g = 0 and K 2 7 , II, Bull. London Math. Soc.35 (3) (2003) 337-343. Zbl1024.14020MR1960943
  19. [19] Morrison D., On the moduli of Todorov surfaces, in: Algebraic Geometry and Commutative Algebra, vol. I, Kinokuniya, Tokyo, 1988, pp. 313-355. Zbl0689.14014MR977767
  20. [20] Mumford D., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, vol. 34, Springer-Verlag, Berlin, 1965. Zbl0147.39304MR214602
  21. [21] Naie D., Surfaces d’Enriques et une construction de surfaces de type général avec p g = 0 , Math. Z.215 (2) (1994) 269-280. Zbl0791.14016MR1259462
  22. [22] Pardini R., The classification of double planes of general type with K 2 = 8 and p g = 0 , J. Reine Angew. Math.417 (1991) 191-213. Zbl0721.14009
  23. [23] Pardini R., The classification of double planes of general type with p g = 0 and K 2 = 8 , J. Algebra259 (2003) 95-118. Zbl1066.14046MR1953710
  24. [24] Peters C., On certain examples of surfaces with p g = 0 due to Burniat, Nagoya Math. J.66 (1977) 109-119. MR444676
  25. [25] Reider I., Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math.127 (1988) 309-316. Zbl0663.14010MR932299
  26. [26] Todorov A.N., A construction of surfaces with p g = 1 , q = 0 and 2 K 2 8 . Counterexamples of the global Torelli theorem, Invent. Math.63 (2) (1981) 287-304. Zbl0457.14016MR610540
  27. [27] Xiao G., Finitude de l'application bicanonique des surfaces de type général, Bull. Soc. Math. France113 (1985) 23-51. Zbl0611.14031MR807825
  28. [28] Xiao G., Degree of the bicanonical map of a surface of general type, Amer. J. Math.112 (5) (1990) 713-737. Zbl0722.14025MR1073006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.