Finitude de l'application bicanonique des surfaces de type général

Gang Xiao

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 23-51
  • ISSN: 0037-9484

How to cite

top

Xiao, Gang. "Finitude de l'application bicanonique des surfaces de type général." Bulletin de la Société Mathématique de France 113 (1985): 23-51. <http://eudml.org/doc/87483>.

@article{Xiao1985,
author = {Xiao, Gang},
journal = {Bulletin de la Société Mathématique de France},
keywords = {bicanonical map; surface of general type},
language = {fre},
pages = {23-51},
publisher = {Société mathématique de France},
title = {Finitude de l'application bicanonique des surfaces de type général},
url = {http://eudml.org/doc/87483},
volume = {113},
year = {1985},
}

TY - JOUR
AU - Xiao, Gang
TI - Finitude de l'application bicanonique des surfaces de type général
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 23
EP - 51
LA - fre
KW - bicanonical map; surface of general type
UR - http://eudml.org/doc/87483
ER -

References

top
  1. [1] ARTIN (M.). — Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math., vol. 84, 1962, p. 485-496. Zbl0105.14404MR26 #3704
  2. [2] ARTIN (M.). — On isolated rational singularities of surfaces, Amer. J. Math., vol. 88, 1966, p. 129-136. Zbl0142.18602MR33 #7340
  3. [3] BEAUVILLE (A.). — Surfaces Algébriques Complexes, astérisque 54, S.M.F., 1978. Zbl0394.14014MR58 #5686
  4. [4] BEAUVILLE (A.). — L'application canonique pour les surfaces de type général, Inv. Math., vol. 55, 1979, p. 121-140. Zbl0403.14006MR81m:14025
  5. [5] BENVENISTE (X). — L'application rationnelle tricanonique des surfaces de type général avec K2 = 2, pg = 0, q = 0, C.R. Acad. Sc. Paris, vol. 286, Série A, 1978, p. 219-221. Zbl0375.14010MR57 #12526
  6. [6] BERNIAT (P.). — Sur les surfaces de genre P12 &gt; 0, Ann. Math. Pura Appl., (4) vol. 71, 1966. Zbl0144.20203
  7. [7] BOMBIERI (E.). — The pluricanonical map of a complex surface, Springer Lecture Notes, vol. 155, 1970, p. 35-87. Zbl0213.47601MR43 #1975
  8. [8] BOMBIERI (E.). — Canonical models of surfaces of general type, Publication I.H.E.S., n° 42, 1973, p. 171-219. Zbl0259.14005MR47 #6710
  9. [9] BOMBIERI (E.). — Superfici irregulari canoniche e pluricanoniche, Symposia Math., vol. XI, 1973, p. 313-322. Zbl0406.14019MR50 #2182
  10. [10] BOMBIERI (E.), CATANESE (F.). — The tricanonical map of a surface with K2 = 2, pg = 0, in C.P. Ramanujam, a tribute, Springer 1978. Zbl0423.14003MR80j:14028
  11. [11] BOMBIERI (E.), HUSEMOLLER (D.). — Classification and embeddings of surfaces, in Algebraic Geometry, Arcata, 1974, p. 329-420, A.M.S. Proc. XXIX. Zbl0326.14009MR58 #22085
  12. [12] ENRIQUES (F.). — Le superficie algebriche, Zanichelli, 1949. Zbl0036.37102MR11,202b
  13. [13] HORIKAWA (E.). — On deformations of quintic surfaces, Inv. Math., vol. 31, 1975, p. 43-85. Zbl0317.14018
  14. [14] HORIKAWA (E.). — On algebraic surfaces with pencils of curves of genus 2, in Complex Analysis and Algebraic Geometry, a volume dedicated to Kodaira, p. 79-90, Cambridge, 1977. Zbl0349.14021MR56 #12015
  15. [15] MIYAOKA (Y.). — Tricanonical maps of numerical Godeaux surfaces, Inv. Math., vol. 34, 1976, p. 99-111. Zbl0337.14010MR53 #13236
  16. [16] MIYAOKA (Y.). — On the Chern numbers of surfaces of general type, Inv. Math. vol. 42, 1977, p. 225-237. Zbl0374.14007MR57 #337
  17. [17] MIYAOKA (Y.). — On numerical Campedelli surfaces, in Complex Analysis and Algebraic Geometry, a volume dedicated to Kodaira, p. 113-118, Cambridge, 1977. Zbl0365.14007MR56 #5573
  18. [18] NAMIKAWA (Y.), UENO (K.). — The complete classification of fibres in pencils of curves of genus two, Manuscripta Math., vol. 9, 1973, p. 143-186. Zbl0263.14007MR51 #5595
  19. [19] OGG (A. P.). — On pencils of curves of genus two, Topology, vol. 5, 1966, p. 355-362. Zbl0145.17802MR34 #1321
  20. [20] PERSSON (U.). — Double covering and surfaces of general type, Springer Lecture Notes, vol. 687, 1978, p. 168-195. Zbl0396.14003MR80h:14017
  21. [21] PETERS (C. A. M.). — On two types of surfaces of general type with vanishing geometric genus, Inv. Math., vol. 32, 1976, p. 33-47. Zbl0305.14012MR53 #13237
  22. [22] PETERS (C. A. M.). — On certain examples of surfaces with pg = 0 due to Berniat, Nagoya Math. J., vol. 66, 1977, p. 109-119. Zbl0329.14019MR56 #3026
  23. [23] RAMANUJAM (C. P.). — Remarks on the Kodaira vanishing theorem, J. of Indian Math. Soc., vol. 36, 1972, p. 41-51. Zbl0276.32018MR48 #8502
  24. [24] REID (M.). — Surfaces with pg = 0, K2 = 1, J. Fac. Sci. Univ. Tokyo Sect. I.A. Math., vol. 25, n° 1, 1978, p. 75-92. Zbl0399.14025MR80h:14018
  25. [25] REID (M.). — π1 for surfaces with small c21, Springer Lecture Notes, vol. 732, 1978, p. 534-544. Zbl0423.14021MR81j:14018
  26. [26] REID (M.). — Surfaces with pg = 0, K2 = 2, à paraître. Zbl0399.14025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.