Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary

Bassam Fayad; Maria Saprykina

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 3, page 339-364
  • ISSN: 0012-9593

How to cite

top

Fayad, Bassam, and Saprykina, Maria. "Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary." Annales scientifiques de l'École Normale Supérieure 38.3 (2005): 339-364. <http://eudml.org/doc/82661>.

@article{Fayad2005,
author = {Fayad, Bassam, Saprykina, Maria},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {differentiable manifold; diffeomorphism; weak mixing},
language = {eng},
number = {3},
pages = {339-364},
publisher = {Elsevier},
title = {Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary},
url = {http://eudml.org/doc/82661},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Fayad, Bassam
AU - Saprykina, Maria
TI - Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 3
SP - 339
EP - 364
LA - eng
KW - differentiable manifold; diffeomorphism; weak mixing
UR - http://eudml.org/doc/82661
ER -

References

top
  1. [1] Anosov D.V., Katok A.B., New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc.23 (1970) 1-35. Zbl0255.58007MR370662
  2. [2] Fayad B., Weak mixing for reparametrized linear flows on the torus, Ergodic Theory Dynamical Systems22 (2002) 187-201. Zbl1001.37006MR1889570
  3. [3] Fayad B., Analytic mixing reparametrizations of irrational flows, Ergodic Theory Dynamical Systems22 (2002) 437-468. Zbl1136.37307MR1898799
  4. [4] Fayad B., Katok A., Constructions in elliptic dynamics, Ergodic Theory Dynamical Systems24 (2004) 1477-1520, (volume dedicated to the memory of Michael Herman). Zbl1089.37012MR2104594
  5. [5] Halmos P.R., Lectures in Ergodic Theory, Japan Math. Soc., 1956. Zbl0073.09302MR97489
  6. [6] Katok A., Robinson E., Cocycles, cohomology and combinatorial constructions in ergodic theory, in: Smooth Ergodic Theory and Its Applications, Seattle, WA, 1999, Proc. Sympos. Pure Math., vol. 69, American Mathematical Society, Providence, RI, 2001, pp. 107-173. Zbl0994.37003MR1858535
  7. [7] Kolmogorov A.N., On dynamical systems with an integral invariant on the torus, Doklady Akad. Nauk SSSR (N.S.)93 (1953) 763-766. Zbl0052.31904MR62892
  8. [8] Moser J., On the volume elements on a manifold, Trans. Amer. Math. Soc.120 (1965) 286-294. Zbl0141.19407MR182927
  9. [9] Saprykina M., Analytic non-linearizable uniquely ergodic diffeomorphisms on T 2 , Ergodic Theory Dynamical Systems23 (3) (2003) 935-955. Zbl1059.37030MR1992672
  10. [10] Šklover M.D., Classical dynamical systems on the torus with continuous spectrum, Izv. Vysš. Učebn. Zaved. Mat.10 (1967) 113-124. MR226147
  11. [11] Windsor A., Minimal but not uniquely ergodic diffeomorphisms, in: Smooth Ergodic Theory and Its Applications, Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 2001, pp. 809-824. Zbl1205.37041MR1858557

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.