Herman’s last geometric theorem

Bassam Fayad; Raphaël Krikorian

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 2, page 193-219
  • ISSN: 0012-9593

Abstract

top
We present a proof of Herman’s Last Geometric Theorem asserting that if F is a smooth diffeomorphism of the annulus having the intersection property, then any given F -invariant smooth curve on which the rotation number of F is Diophantine is accumulated by a positive measure set of smooth invariant curves on which F is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable feature of this theorem is that it does not require any twist assumption.

How to cite

top

Fayad, Bassam, and Krikorian, Raphaël. "Herman’s last geometric theorem." Annales scientifiques de l'École Normale Supérieure 42.2 (2009): 193-219. <http://eudml.org/doc/272121>.

@article{Fayad2009,
abstract = {We present a proof of Herman’s Last Geometric Theorem asserting that if $F$ is a smooth diffeomorphism of the annulus having the intersection property, then any given $F$-invariant smooth curve on which the rotation number of $F$ is Diophantine is accumulated by a positive measure set of smooth invariant curves on which $F$ is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable feature of this theorem is that it does not require any twist assumption.},
author = {Fayad, Bassam, Krikorian, Raphaël},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Birkhoff normal forms; KAM theory; invariant curves; Whitney dependence; stability of elliptic fixed; disk diffeomorphisms},
language = {eng},
number = {2},
pages = {193-219},
publisher = {Société mathématique de France},
title = {Herman’s last geometric theorem},
url = {http://eudml.org/doc/272121},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Fayad, Bassam
AU - Krikorian, Raphaël
TI - Herman’s last geometric theorem
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 2
SP - 193
EP - 219
AB - We present a proof of Herman’s Last Geometric Theorem asserting that if $F$ is a smooth diffeomorphism of the annulus having the intersection property, then any given $F$-invariant smooth curve on which the rotation number of $F$ is Diophantine is accumulated by a positive measure set of smooth invariant curves on which $F$ is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable feature of this theorem is that it does not require any twist assumption.
LA - eng
KW - Birkhoff normal forms; KAM theory; invariant curves; Whitney dependence; stability of elliptic fixed; disk diffeomorphisms
UR - http://eudml.org/doc/272121
ER -

References

top
  1. [1] D. V. Anosov & A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč. 23 (1970), 3–36. Zbl0255.58007MR370662
  2. [2] J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnolʼd, Moser, Rüssmann, Zehnder, Herman, Pöschel,...), Seminaire Bourbaki, vol. 1984/85, Astérisque 133-134 (1986), 113–157. Zbl0602.58021MR837218
  3. [3] C. Q. Cheng & Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom. 47 (1989/90), 275–292. Zbl0705.70013MR1056793
  4. [4] B. Fayad & M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Sci. École Norm. Sup.38 (2005), 339–364. Zbl1090.37001MR2166337
  5. [5] J. Féjoz, Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman), Ergodic Theory Dynam. Systems24 (2004), 1521–1582. Zbl1087.37506MR2104595
  6. [6] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65–222. Zbl0499.58003MR656198
  7. [7] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.É.S. 49 (1979), 5–233. Zbl0448.58019
  8. [8] M. Herman, Some open problems in dynamical systems, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math., 1998, 797–808. Zbl0910.58036MR1648127
  9. [9] R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque 259 (1999). Zbl0957.37016
  10. [10] J. Moser, Stable and random motions in dynamical systems. With special emphasis on celestial mechanics, Annals of Mathematics studies 77, Princeton University Press, Princeton, 1973. Zbl0271.70009MR442980
  11. [11] H. Rüssmann, Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition, Ergodic Theory Dynam. Systems22 (2002), 1551–1573. Zbl1030.37040MR1934150
  12. [12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, 1970. Zbl0207.13501MR290095
  13. [13] Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theory Dynam. Systems12 (1992), 621–631. Zbl0768.58042MR1182665
  14. [14] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup.17 (1984), 333–359. Zbl0595.57027MR777374
  15. [15] J.-C. Yoccoz, Travaux de Herman sur les tores invariants, Séminaire Bourbaki, vol. 1991/92, exp. no 754, Astérisque 206 (1992), 311–344. Zbl0791.58044MR1206072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.