Herman’s last geometric theorem
Bassam Fayad; Raphaël Krikorian
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 2, page 193-219
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topFayad, Bassam, and Krikorian, Raphaël. "Herman’s last geometric theorem." Annales scientifiques de l'École Normale Supérieure 42.2 (2009): 193-219. <http://eudml.org/doc/272121>.
@article{Fayad2009,
abstract = {We present a proof of Herman’s Last Geometric Theorem asserting that if $F$ is a smooth diffeomorphism of the annulus having the intersection property, then any given $F$-invariant smooth curve on which the rotation number of $F$ is Diophantine is accumulated by a positive measure set of smooth invariant curves on which $F$ is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable feature of this theorem is that it does not require any twist assumption.},
author = {Fayad, Bassam, Krikorian, Raphaël},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Birkhoff normal forms; KAM theory; invariant curves; Whitney dependence; stability of elliptic fixed; disk diffeomorphisms},
language = {eng},
number = {2},
pages = {193-219},
publisher = {Société mathématique de France},
title = {Herman’s last geometric theorem},
url = {http://eudml.org/doc/272121},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Fayad, Bassam
AU - Krikorian, Raphaël
TI - Herman’s last geometric theorem
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 2
SP - 193
EP - 219
AB - We present a proof of Herman’s Last Geometric Theorem asserting that if $F$ is a smooth diffeomorphism of the annulus having the intersection property, then any given $F$-invariant smooth curve on which the rotation number of $F$ is Diophantine is accumulated by a positive measure set of smooth invariant curves on which $F$ is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable feature of this theorem is that it does not require any twist assumption.
LA - eng
KW - Birkhoff normal forms; KAM theory; invariant curves; Whitney dependence; stability of elliptic fixed; disk diffeomorphisms
UR - http://eudml.org/doc/272121
ER -
References
top- [1] D. V. Anosov & A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč. 23 (1970), 3–36. Zbl0255.58007MR370662
- [2] J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnolʼd, Moser, Rüssmann, Zehnder, Herman, Pöschel,...), Seminaire Bourbaki, vol. 1984/85, Astérisque 133-134 (1986), 113–157. Zbl0602.58021MR837218
- [3] C. Q. Cheng & Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom. 47 (1989/90), 275–292. Zbl0705.70013MR1056793
- [4] B. Fayad & M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Sci. École Norm. Sup.38 (2005), 339–364. Zbl1090.37001MR2166337
- [5] J. Féjoz, Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman), Ergodic Theory Dynam. Systems24 (2004), 1521–1582. Zbl1087.37506MR2104595
- [6] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65–222. Zbl0499.58003MR656198
- [7] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.É.S. 49 (1979), 5–233. Zbl0448.58019
- [8] M. Herman, Some open problems in dynamical systems, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math., 1998, 797–808. Zbl0910.58036MR1648127
- [9] R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque 259 (1999). Zbl0957.37016
- [10] J. Moser, Stable and random motions in dynamical systems. With special emphasis on celestial mechanics, Annals of Mathematics studies 77, Princeton University Press, Princeton, 1973. Zbl0271.70009MR442980
- [11] H. Rüssmann, Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition, Ergodic Theory Dynam. Systems22 (2002), 1551–1573. Zbl1030.37040MR1934150
- [12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, 1970. Zbl0207.13501MR290095
- [13] Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theory Dynam. Systems12 (1992), 621–631. Zbl0768.58042MR1182665
- [14] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup.17 (1984), 333–359. Zbl0595.57027MR777374
- [15] J.-C. Yoccoz, Travaux de Herman sur les tores invariants, Séminaire Bourbaki, vol. 1991/92, exp. no 754, Astérisque 206 (1992), 311–344. Zbl0791.58044MR1206072
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.