Cubic structures and ideal class groups
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 3, page 471-503
- ISSN: 0012-9593
Access Full Article
topHow to cite
topPappas, Georgios. "Cubic structures and ideal class groups." Annales scientifiques de l'École Normale Supérieure 38.3 (2005): 471-503. <http://eudml.org/doc/82666>.
@article{Pappas2005,
author = {Pappas, Georgios},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group scheme; cubic structure; theorem of the cube; biextension},
language = {eng},
number = {3},
pages = {471-503},
publisher = {Elsevier},
title = {Cubic structures and ideal class groups},
url = {http://eudml.org/doc/82666},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Pappas, Georgios
TI - Cubic structures and ideal class groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 3
SP - 471
EP - 503
LA - eng
KW - group scheme; cubic structure; theorem of the cube; biextension
UR - http://eudml.org/doc/82666
ER -
References
top- [1] Ando M., Hopkins M.J., Strickland N.P., Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math.146 (3) (2001) 595-687. Zbl1031.55005MR1869850
- [2] Borel A., Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4)7 (1974) 235-272. Zbl0316.57026MR387496
- [3] Breen L., Fonctions thêta et théorème du cube, Lecture Notes in Math., vol. 980, Springer, Berlin, 1983. Zbl0558.14029MR823233
- [4] Buhler J., Crandall R., Ernvall R., Metsänkylä T., Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput.31 (1–2) (2001) 89-96. Zbl1001.11061MR1806208
- [5] Chinburg T., Pappas G., Taylor M.J., Cubic structures, equivariant Euler characteristics and modular forms, math.NT/0309327. Zbl1255.14010
- [6] Demazure M., Gabriel P., Groupes algébriques, Masson et Cie/North-Holland, Paris/Amsterdam, 1970. Zbl0203.23401MR302656
- [7] Deligne P., Le déterminant de la cohomologie, in: Currents Trends in Arithmetical Algebraic Geometry, Contemp. Math., vol. 67, American Mathematical Society, Providence, RI, 1987. Zbl0629.14008MR902592
- [8] Dwyer W., Friedlander E., Algebraic and étale K-theory, Trans. Amer. Math. Soc.292 (1) (1985) 247-280. Zbl0581.14012MR805962
- [9] Ducrot F., Cube structures and intersection bundles, J. Pure Appl. Algebra195 (1) (2005) 33-73. Zbl1067.14007MR2100310
- [10] Kurihara M., Some remarks on conjectures about cyclotomic fields and K-groups of , Compositio Math.81 (2) (1992) 223-236. Zbl0747.11055MR1145807
- [11] Laumon G., Moret-Bailly L., Champs algébriques, Ergeb. Math. Grenzg. (3), vol. 39, Springer, Berlin, 2000. Zbl0945.14005MR1771927
- [12] Lee R., Szczarba R.H., On the torsion in and , Duke Math. J.45 (1) (1978) 101-129, with an addendum by C. Soulé, 131–132. Zbl0385.18009MR491893
- [13] Mazur B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math.47 (1977) 33-186, (1978). Zbl0394.14008MR488287
- [14] Mazur B., Wiles A., Class fields of Abelian extensions of , Invent. Math.76 (2) (1984) 179-330. Zbl0545.12005MR742853
- [15] Moret-Bailly L., Pinceaux de variétés abéliennes, Astérisque, vol. 129, 1985, 266 pp. Zbl0595.14032MR797982
- [16] Pappas G., Galois modules and the theorem of the cube, Invent. Math.133 (1) (1998) 193-225. Zbl0923.14030MR1626489
- [17] Rim D.S., Modules over finite groups, Ann. of Math.69 (1959) 700-712. Zbl0092.26104MR104721
- [18] Rognes J., is the trivial group, Topology39 (2) (2000) 267-281. Zbl0937.19005MR1722028
- [19] Soulé C., Perfect forms and the Vandiver conjecture, J. reine Angew. Math.517 (1999) 209-221. Zbl1012.11094MR1728540
- [20] , Théorie des topos et cohomologie étale des schémas, Dirigé par Artin M., Grothendieck A., Verdier J.-L. Avec la collaboration de Bourbaki N., Deligne P., Saint-Donat B., Lecture Notes in Math., vols. 269, 270, 305, Springer, Berlin, 1972.
- [21] , Groupes de monodromie en géométrie algébrique. I, Dirigé par Grothendieck A. Avec la collaboration de Raynaud M., Rim D.S., Lecture Notes in Math., vol. 288, Springer, Berlin, 1972. Zbl0237.00013MR354656
- [22] Washington L., Introduction to Cyclotomic Fields, Graduate Texts in Math., vol. 83, Springer, New York, 1982, xi+389 pp. Zbl0484.12001MR718674
- [23] Waterhouse W., Principal homogeneous spaces and group scheme extensions, Trans. Amer. Math. Soc.153 (1971) 181-189. Zbl0208.48401MR269659
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.