Cubic structures and ideal class groups

Georgios Pappas

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 3, page 471-503
  • ISSN: 0012-9593

How to cite

top

Pappas, Georgios. "Cubic structures and ideal class groups." Annales scientifiques de l'École Normale Supérieure 38.3 (2005): 471-503. <http://eudml.org/doc/82666>.

@article{Pappas2005,
author = {Pappas, Georgios},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group scheme; cubic structure; theorem of the cube; biextension},
language = {eng},
number = {3},
pages = {471-503},
publisher = {Elsevier},
title = {Cubic structures and ideal class groups},
url = {http://eudml.org/doc/82666},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Pappas, Georgios
TI - Cubic structures and ideal class groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 3
SP - 471
EP - 503
LA - eng
KW - group scheme; cubic structure; theorem of the cube; biextension
UR - http://eudml.org/doc/82666
ER -

References

top
  1. [1] Ando M., Hopkins M.J., Strickland N.P., Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math.146 (3) (2001) 595-687. Zbl1031.55005MR1869850
  2. [2] Borel A., Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4)7 (1974) 235-272. Zbl0316.57026MR387496
  3. [3] Breen L., Fonctions thêta et théorème du cube, Lecture Notes in Math., vol. 980, Springer, Berlin, 1983. Zbl0558.14029MR823233
  4. [4] Buhler J., Crandall R., Ernvall R., Metsänkylä T., Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput.31 (1–2) (2001) 89-96. Zbl1001.11061MR1806208
  5. [5] Chinburg T., Pappas G., Taylor M.J., Cubic structures, equivariant Euler characteristics and modular forms, math.NT/0309327. Zbl1255.14010
  6. [6] Demazure M., Gabriel P., Groupes algébriques, Masson et Cie/North-Holland, Paris/Amsterdam, 1970. Zbl0203.23401MR302656
  7. [7] Deligne P., Le déterminant de la cohomologie, in: Currents Trends in Arithmetical Algebraic Geometry, Contemp. Math., vol. 67, American Mathematical Society, Providence, RI, 1987. Zbl0629.14008MR902592
  8. [8] Dwyer W., Friedlander E., Algebraic and étale K-theory, Trans. Amer. Math. Soc.292 (1) (1985) 247-280. Zbl0581.14012MR805962
  9. [9] Ducrot F., Cube structures and intersection bundles, J. Pure Appl. Algebra195 (1) (2005) 33-73. Zbl1067.14007MR2100310
  10. [10] Kurihara M., Some remarks on conjectures about cyclotomic fields and K-groups of Z , Compositio Math.81 (2) (1992) 223-236. Zbl0747.11055MR1145807
  11. [11] Laumon G., Moret-Bailly L., Champs algébriques, Ergeb. Math. Grenzg. (3), vol. 39, Springer, Berlin, 2000. Zbl0945.14005MR1771927
  12. [12] Lee R., Szczarba R.H., On the torsion in K 4 Z and K 5 Z , Duke Math. J.45 (1) (1978) 101-129, with an addendum by C. Soulé, 131–132. Zbl0385.18009MR491893
  13. [13] Mazur B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math.47 (1977) 33-186, (1978). Zbl0394.14008MR488287
  14. [14] Mazur B., Wiles A., Class fields of Abelian extensions of Q , Invent. Math.76 (2) (1984) 179-330. Zbl0545.12005MR742853
  15. [15] Moret-Bailly L., Pinceaux de variétés abéliennes, Astérisque, vol. 129, 1985, 266 pp. Zbl0595.14032MR797982
  16. [16] Pappas G., Galois modules and the theorem of the cube, Invent. Math.133 (1) (1998) 193-225. Zbl0923.14030MR1626489
  17. [17] Rim D.S., Modules over finite groups, Ann. of Math.69 (1959) 700-712. Zbl0092.26104MR104721
  18. [18] Rognes J., K 4 Z is the trivial group, Topology39 (2) (2000) 267-281. Zbl0937.19005MR1722028
  19. [19] Soulé C., Perfect forms and the Vandiver conjecture, J. reine Angew. Math.517 (1999) 209-221. Zbl1012.11094MR1728540
  20. [20] , Théorie des topos et cohomologie étale des schémas, Dirigé par Artin M., Grothendieck A., Verdier J.-L. Avec la collaboration de Bourbaki N., Deligne P., Saint-Donat B., Lecture Notes in Math., vols. 269, 270, 305, Springer, Berlin, 1972. 
  21. [21] , Groupes de monodromie en géométrie algébrique. I, Dirigé par Grothendieck A. Avec la collaboration de Raynaud M., Rim D.S., Lecture Notes in Math., vol. 288, Springer, Berlin, 1972. Zbl0237.00013MR354656
  22. [22] Washington L., Introduction to Cyclotomic Fields, Graduate Texts in Math., vol. 83, Springer, New York, 1982, xi+389 pp. Zbl0484.12001MR718674
  23. [23] Waterhouse W., Principal homogeneous spaces and group scheme extensions, Trans. Amer. Math. Soc.153 (1971) 181-189. Zbl0208.48401MR269659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.