Vector bundles on p-adic curves and parallel transport

Christopher Deninger[1]; Annette Werner[2]

  • [1] WWU Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne)
  • [2] Universität Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Germany)

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 4, page 553-597
  • ISSN: 0012-9593

How to cite

top

Deninger, Christopher, and Werner, Annette. "Vector bundles on p-adic curves and parallel transport." Annales scientifiques de l'École Normale Supérieure 38.4 (2005): 553-597. <http://eudml.org/doc/82668>.

@article{Deninger2005,
affiliation = {WWU Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne); Universität Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Germany)},
author = {Deninger, Christopher, Werner, Annette},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic fundamental group; representation, strong semistability; covering},
language = {eng},
number = {4},
pages = {553-597},
publisher = {Elsevier},
title = {Vector bundles on p-adic curves and parallel transport},
url = {http://eudml.org/doc/82668},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Deninger, Christopher
AU - Werner, Annette
TI - Vector bundles on p-adic curves and parallel transport
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 4
SP - 553
EP - 597
LA - eng
KW - algebraic fundamental group; representation, strong semistability; covering
UR - http://eudml.org/doc/82668
ER -

References

top
  1. [1] Atiyah M., Vector bundles over an elliptic curve, Proc. London Math. Soc. (3)7 (1957) 414-452. Zbl0084.17305MR131423
  2. [2] Berkovich V., Integration of one forms on p-adic analytic spaces, Preprint, 2004. MR2263704
  3. [3] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Springer, Berlin, 1990. Zbl0705.14001MR1045822
  4. [4] Brandal W., Commutative Rings Whose Finitely Generated Modules Decompose, Lecture Notes in Math., vol. 723, Springer, Berlin, 1979. Zbl0426.13004MR539854
  5. [5] Brenner H., There is no Bogomolov type restriction theorem for strong semistability in positive characteristic, Proc. Amer. Math. Soc.133 (2005) 1941-1947. Zbl1083.14050MR2137859
  6. [6] Coleman R., Reciprocity laws on curves, Comp. Math.72 (1989) 205-235. Zbl0706.14013MR1030142
  7. [7] Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Publ. Math. IHÉS, vol. 36, 1969, pp. 75–109. Zbl0181.48803MR262240
  8. [8] Deninger C., Werner A., Vector bundles and p-adic representations I, ArXiv, NT/0309273, September 2003. 
  9. [9] Deninger, C., Werner, A., Line bundles and p-adic characters, in: G. van der Geer, B. Moonen, R. Schoof (Eds.), Number Fields and Function Fields—Two Parallel Worlds, Birkhäuser, Basel, 2005, in press. Zbl1100.11019
  10. [10] Epp H., Eliminating wild ramification, Invent. Math.19 (1973) 235-249. Zbl0254.13008MR321929
  11. [11] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique I, Publ. Math. IHÉS, vol. 4, 1960. Zbl0203.23301
  12. [12] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique II, Publ. Math. IHÉS, vol. 8, 1961. Zbl0203.23301
  13. [13] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique III, Publ. Math. IHÉS, vol. 11, 1961, vol. 17, 1963. Zbl0203.23301
  14. [14] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique IV, Publ. Math. IHÉS, vol. 20, 1964, vol. 24, 1965, vol. 28, 1966, vol. 32, 1967. Zbl0203.23301
  15. [15] Grothendieck A. et al. , Séminaire de géométrie algébrique du Bois Marie 1960/66, in: Revêtements étales et groupe fondamental, Lecture Notes in Math., vol. 224, Springer, Berlin, 1971. Zbl0234.14002MR354651
  16. [16] Grothendieck A. et al. , Séminaire de géométrie algébrique du Bois Marie. Schémas en groupes. Tome I, Lecture Notes in Math., vol. 151, Springer, Berlin, 1970. Zbl0207.51401MR274458
  17. [17] Faltings G., Semistable vector bundles on Mumford curves, Invent. Math.74 (1983) 199-212. Zbl0526.14018MR723214
  18. [18] Faltings G., A p-adic Simpson correspondence, Notes, 2003. 
  19. [19] Giraud J., Cohomologie non abélienne, Springer, Berlin, 1971. Zbl0226.14011MR344253
  20. [20] Hartshorne R., Residues and Duality, Lecture Notes in Math., vol. 20, Springer, Berlin, 1966. Zbl0212.26101MR222093
  21. [21] Herz G., Vector bundles on Mumford curves, PhD thesis, 2005. 
  22. [22] Lange H., Stuhler U., Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z.156 (1977) 73-83. Zbl0349.14018MR472827
  23. [23] Lichtenbaum S., Curves over discrete valuation rings, Amer. J. Math.90 (1968) 380-405. Zbl0194.22101MR230724
  24. [24] Lipman J., Desingularization of two-dimensional schemes, Ann. of Math.107 (1978) 151-207. Zbl0349.14004MR491722
  25. [25] Liu Q., Algebraic Geometry and Arithmetic Curves, Oxford University Press, Oxford, 2002. Zbl0996.14005MR1917232
  26. [26] Liu Q., Stable reduction of finite covers of curves, Compositio Math., in press. Zbl1108.14020
  27. [27] Mumford D., Abelian Varieties, Oxford University Press, Oxford, 1970. Zbl0223.14022MR282985
  28. [28] Narasimhan M.S., Seshadri C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math.82 (1965) 540-567. Zbl0171.04803MR184252
  29. [29] Raynaud M., Spécialisation du foncteur de Picard, Publ. Math. IHÉS, vol. 38, 1970, pp. 27–76. Zbl0207.51602MR282993
  30. [30] Raynaud M., Gruson L., Critères de platitude et de projectivité, Invent. Math.13 (1971) 1-89. Zbl0227.14010MR308104
  31. [31] Seshadri C.S., Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Soc. Math. France, Paris, 1982. Zbl0517.14008MR699278
  32. [32] Tate, J.,p-divisible groups, in: Proceedings of a Conference on Local Fields, Driebergen, 1966, pp. 158–183. Zbl0157.27601MR231827
  33. [33] Vologodsky V., Hodge structure on the fundamental group and its application to p-adic integration, Moscow Math. J.3 (2003) 205-247. Zbl1050.14013MR1996809
  34. [34] Weil A., Généralisation des fonctions abéliennes, J. Math. Pures Appl. (IX)17 (1938) 47-87. Zbl0018.06302JFM64.0361.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.