Vector bundles on p-adic curves and parallel transport
Christopher Deninger[1]; Annette Werner[2]
- [1] WWU Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne)
- [2] Universität Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Germany)
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 4, page 553-597
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDeninger, Christopher, and Werner, Annette. "Vector bundles on p-adic curves and parallel transport." Annales scientifiques de l'École Normale Supérieure 38.4 (2005): 553-597. <http://eudml.org/doc/82668>.
@article{Deninger2005,
affiliation = {WWU Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Allemagne); Universität Münster, Mathematisches Institut, Einsteinstr. 62, 48149 Münster (Germany)},
author = {Deninger, Christopher, Werner, Annette},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic fundamental group; representation, strong semistability; covering},
language = {eng},
number = {4},
pages = {553-597},
publisher = {Elsevier},
title = {Vector bundles on p-adic curves and parallel transport},
url = {http://eudml.org/doc/82668},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Deninger, Christopher
AU - Werner, Annette
TI - Vector bundles on p-adic curves and parallel transport
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 4
SP - 553
EP - 597
LA - eng
KW - algebraic fundamental group; representation, strong semistability; covering
UR - http://eudml.org/doc/82668
ER -
References
top- [1] Atiyah M., Vector bundles over an elliptic curve, Proc. London Math. Soc. (3)7 (1957) 414-452. Zbl0084.17305MR131423
- [2] Berkovich V., Integration of one forms on p-adic analytic spaces, Preprint, 2004. MR2263704
- [3] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Springer, Berlin, 1990. Zbl0705.14001MR1045822
- [4] Brandal W., Commutative Rings Whose Finitely Generated Modules Decompose, Lecture Notes in Math., vol. 723, Springer, Berlin, 1979. Zbl0426.13004MR539854
- [5] Brenner H., There is no Bogomolov type restriction theorem for strong semistability in positive characteristic, Proc. Amer. Math. Soc.133 (2005) 1941-1947. Zbl1083.14050MR2137859
- [6] Coleman R., Reciprocity laws on curves, Comp. Math.72 (1989) 205-235. Zbl0706.14013MR1030142
- [7] Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Publ. Math. IHÉS, vol. 36, 1969, pp. 75–109. Zbl0181.48803MR262240
- [8] Deninger C., Werner A., Vector bundles and p-adic representations I, ArXiv, NT/0309273, September 2003.
- [9] Deninger, C., Werner, A., Line bundles and p-adic characters, in: G. van der Geer, B. Moonen, R. Schoof (Eds.), Number Fields and Function Fields—Two Parallel Worlds, Birkhäuser, Basel, 2005, in press. Zbl1100.11019
- [10] Epp H., Eliminating wild ramification, Invent. Math.19 (1973) 235-249. Zbl0254.13008MR321929
- [11] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique I, Publ. Math. IHÉS, vol. 4, 1960. Zbl0203.23301
- [12] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique II, Publ. Math. IHÉS, vol. 8, 1961. Zbl0203.23301
- [13] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique III, Publ. Math. IHÉS, vol. 11, 1961, vol. 17, 1963. Zbl0203.23301
- [14] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique IV, Publ. Math. IHÉS, vol. 20, 1964, vol. 24, 1965, vol. 28, 1966, vol. 32, 1967. Zbl0203.23301
- [15] Grothendieck A. et al. , Séminaire de géométrie algébrique du Bois Marie 1960/66, in: Revêtements étales et groupe fondamental, Lecture Notes in Math., vol. 224, Springer, Berlin, 1971. Zbl0234.14002MR354651
- [16] Grothendieck A. et al. , Séminaire de géométrie algébrique du Bois Marie. Schémas en groupes. Tome I, Lecture Notes in Math., vol. 151, Springer, Berlin, 1970. Zbl0207.51401MR274458
- [17] Faltings G., Semistable vector bundles on Mumford curves, Invent. Math.74 (1983) 199-212. Zbl0526.14018MR723214
- [18] Faltings G., A p-adic Simpson correspondence, Notes, 2003.
- [19] Giraud J., Cohomologie non abélienne, Springer, Berlin, 1971. Zbl0226.14011MR344253
- [20] Hartshorne R., Residues and Duality, Lecture Notes in Math., vol. 20, Springer, Berlin, 1966. Zbl0212.26101MR222093
- [21] Herz G., Vector bundles on Mumford curves, PhD thesis, 2005.
- [22] Lange H., Stuhler U., Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z.156 (1977) 73-83. Zbl0349.14018MR472827
- [23] Lichtenbaum S., Curves over discrete valuation rings, Amer. J. Math.90 (1968) 380-405. Zbl0194.22101MR230724
- [24] Lipman J., Desingularization of two-dimensional schemes, Ann. of Math.107 (1978) 151-207. Zbl0349.14004MR491722
- [25] Liu Q., Algebraic Geometry and Arithmetic Curves, Oxford University Press, Oxford, 2002. Zbl0996.14005MR1917232
- [26] Liu Q., Stable reduction of finite covers of curves, Compositio Math., in press. Zbl1108.14020
- [27] Mumford D., Abelian Varieties, Oxford University Press, Oxford, 1970. Zbl0223.14022MR282985
- [28] Narasimhan M.S., Seshadri C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math.82 (1965) 540-567. Zbl0171.04803MR184252
- [29] Raynaud M., Spécialisation du foncteur de Picard, Publ. Math. IHÉS, vol. 38, 1970, pp. 27–76. Zbl0207.51602MR282993
- [30] Raynaud M., Gruson L., Critères de platitude et de projectivité, Invent. Math.13 (1971) 1-89. Zbl0227.14010MR308104
- [31] Seshadri C.S., Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Soc. Math. France, Paris, 1982. Zbl0517.14008MR699278
- [32] Tate, J.,p-divisible groups, in: Proceedings of a Conference on Local Fields, Driebergen, 1966, pp. 158–183. Zbl0157.27601MR231827
- [33] Vologodsky V., Hodge structure on the fundamental group and its application to p-adic integration, Moscow Math. J.3 (2003) 205-247. Zbl1050.14013MR1996809
- [34] Weil A., Généralisation des fonctions abéliennes, J. Math. Pures Appl. (IX)17 (1938) 47-87. Zbl0018.06302JFM64.0361.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.