The dimension of some affine Deligne–Lusztig varieties
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 3, page 513-526
- ISSN: 0012-9593
Access Full Article
topHow to cite
topViehmann, Eva. "The dimension of some affine Deligne–Lusztig varieties." Annales scientifiques de l'École Normale Supérieure 39.3 (2006): 513-526. <http://eudml.org/doc/82692>.
@article{Viehmann2006,
author = {Viehmann, Eva},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Deligne-Lusztig varieties; reductive groups},
language = {eng},
number = {3},
pages = {513-526},
publisher = {Elsevier},
title = {The dimension of some affine Deligne–Lusztig varieties},
url = {http://eudml.org/doc/82692},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Viehmann, Eva
TI - The dimension of some affine Deligne–Lusztig varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 3
SP - 513
EP - 526
LA - eng
KW - Deligne-Lusztig varieties; reductive groups
UR - http://eudml.org/doc/82692
ER -
References
top- [1] Görtz U., Haines Th.J., Kottwitz R.E., Reuman D.C., Dimensions of some affine Deligne–Lusztig varieties, Ann. Scient. Éc. Norm. Sup.39 (3) (2006), math.AG/0504443. Zbl1108.14035MR2265676
- [2] de Jong A.J., Oort F., Purity of the stratification by Newton polygons, J. Amer. Math. Soc.13 (2000) 209-241. Zbl0954.14007MR1703336
- [3] Kottwitz R.E., Isocrystals with additional structure, Comp. Math.56 (1985) 201-220. Zbl0597.20038MR809866
- [4] Kottwitz R.E., Dimensions of Newton strata in the adjoint quotient of reductive groups, math.AG/0601196.
- [5] Kottwitz R.E., Rapoport M., On the existence of F-crystals, Comment. Math. Helv.78 (2003) 153-184. Zbl1126.14023MR1966756
- [6] Rapoport M., A positivity property of the Satake isomorphism, Manuscripta Math.101 (2) (2000) 153-166. Zbl0941.22006MR1742251
- [7] Rapoport M., A guide to the reduction modulo p of Shimura varieties, Astérisque298 (2005) 271-318. Zbl1084.11029MR2141705
- [8] Reuman D.C., Determining whether certain affine Deligne–Lusztig sets are empty, PhD thesis, Chicago 2002, math.RT/0211434.
- [9] Reuman D.C., Formulas for the dimensions of some affine Deligne–Lusztig varieties, Michigan Math. J.52 (2004) 435-451. Zbl1053.22010MR2069809
- [10] Viehmann E., Moduli spaces of p-divisible groups, math.AG/0502320. Zbl1144.14040
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.