The dimension of some affine Deligne–Lusztig varieties

Eva Viehmann

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 3, page 513-526
  • ISSN: 0012-9593

How to cite

top

Viehmann, Eva. "The dimension of some affine Deligne–Lusztig varieties." Annales scientifiques de l'École Normale Supérieure 39.3 (2006): 513-526. <http://eudml.org/doc/82692>.

@article{Viehmann2006,
author = {Viehmann, Eva},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Deligne-Lusztig varieties; reductive groups},
language = {eng},
number = {3},
pages = {513-526},
publisher = {Elsevier},
title = {The dimension of some affine Deligne–Lusztig varieties},
url = {http://eudml.org/doc/82692},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Viehmann, Eva
TI - The dimension of some affine Deligne–Lusztig varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 3
SP - 513
EP - 526
LA - eng
KW - Deligne-Lusztig varieties; reductive groups
UR - http://eudml.org/doc/82692
ER -

References

top
  1. [1] Görtz U., Haines Th.J., Kottwitz R.E., Reuman D.C., Dimensions of some affine Deligne–Lusztig varieties, Ann. Scient. Éc. Norm. Sup.39 (3) (2006), math.AG/0504443. Zbl1108.14035MR2265676
  2. [2] de Jong A.J., Oort F., Purity of the stratification by Newton polygons, J. Amer. Math. Soc.13 (2000) 209-241. Zbl0954.14007MR1703336
  3. [3] Kottwitz R.E., Isocrystals with additional structure, Comp. Math.56 (1985) 201-220. Zbl0597.20038MR809866
  4. [4] Kottwitz R.E., Dimensions of Newton strata in the adjoint quotient of reductive groups, math.AG/0601196. 
  5. [5] Kottwitz R.E., Rapoport M., On the existence of F-crystals, Comment. Math. Helv.78 (2003) 153-184. Zbl1126.14023MR1966756
  6. [6] Rapoport M., A positivity property of the Satake isomorphism, Manuscripta Math.101 (2) (2000) 153-166. Zbl0941.22006MR1742251
  7. [7] Rapoport M., A guide to the reduction modulo p of Shimura varieties, Astérisque298 (2005) 271-318. Zbl1084.11029MR2141705
  8. [8] Reuman D.C., Determining whether certain affine Deligne–Lusztig sets are empty, PhD thesis, Chicago 2002, math.RT/0211434. 
  9. [9] Reuman D.C., Formulas for the dimensions of some affine Deligne–Lusztig varieties, Michigan Math. J.52 (2004) 435-451. Zbl1053.22010MR2069809
  10. [10] Viehmann E., Moduli spaces of p-divisible groups, math.AG/0502320. Zbl1144.14040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.