On a conjecture of Kottwitz and Rapoport
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 6, page 1017-1038
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topGashi, Qëndrim R.. "On a conjecture of Kottwitz and Rapoport." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 1017-1038. <http://eudml.org/doc/272229>.
@article{Gashi2010,
abstract = {We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur’s Inequality for all (connected) split and quasi-split unramified reductive groups. Our results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.},
author = {Gashi, Qëndrim R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Newton polygon; isocrystal; affine Deligne-Lusztig variety},
language = {eng},
number = {6},
pages = {1017-1038},
publisher = {Société mathématique de France},
title = {On a conjecture of Kottwitz and Rapoport},
url = {http://eudml.org/doc/272229},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Gashi, Qëndrim R.
TI - On a conjecture of Kottwitz and Rapoport
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 1017
EP - 1038
AB - We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur’s Inequality for all (connected) split and quasi-split unramified reductive groups. Our results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.
LA - eng
KW - Newton polygon; isocrystal; affine Deligne-Lusztig variety
UR - http://eudml.org/doc/272229
ER -
References
top- [1] J. Arthur, A local trace formula, Publ. Math. I.H.É.S. 73 (1991), 5–96. Zbl0741.22013MR1114210
- [2] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics, Springer, 2002. Zbl0983.17001MR1890629
- [3] N. Bourbaki, Lie groups and Lie algebras, Chapters 7–9, Elements of Mathematics, Springer, 2005. Zbl1139.17002MR2109105
- [4] Q. R. Gashi, A vanishing result for toric varieties associated with root systems, Albanian J. Math.1 (2007), 235–244. Zbl1133.14054MR2367216
- [5] Q. R. Gashi, Vanishing results for toric varieties associated to and , Transform. Groups13 (2008), 149–171. Zbl1160.14039MR2421320
- [6] Q. R. Gashi & T. Schedler, On dominance and minuscule Weyl group elements, preprint arXiv:0908.1091. Zbl1239.20045MR2772538
- [7] M. Görtz, T. J. Haines, R. E. Kottwitz & D. C. Reuman, Affine Deligne-Lusztig varieties in affine flag varieties, preprint arXiv:0805.0045. Zbl1229.14036
- [8] U. Görtz, T. J. Haines, R. E. Kottwitz & D. C. Reuman, Dimensions of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup.39 (2006), 467–511. Zbl1108.14035MR2265676
- [9] R. E. Kottwitz, Isocrystals with additional structure, Compositio Math.56 (1985), 201–220. Zbl0597.20038MR809866
- [10] R. E. Kottwitz, On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not.2003 (2003), 1433–1447. Zbl1074.14016MR1976046
- [11] R. E. Kottwitz & M. Rapoport, On the existence of -crystals, Comment. Math. Helv.78 (2003), 153–184. Zbl1126.14023MR1966756
- [12] C. Lucarelli, A converse to Mazur’s inequality for split classical groups, J. Inst. Math. Jussieu3 (2004), 165–183. Zbl1054.14059MR2055708
- [13] C. Lucarelli, A converse to Mazur’s inequality for split classical groups, Thèse, University of Chicago, 2004. Zbl1054.14059MR2055708
- [14] B. Mazur, Frobenius and the Hodge filtration, Bull. Amer. Math. Soc.78 (1972), 653–667. Zbl0258.14006MR330169
- [15] B. Mazur, Frobenius and the Hodge filtration (estimates), Ann. of Math.98 (1973), 58–95. Zbl0261.14005MR321932
- [16] S. Mozes, Reflection processes on graphs and Weyl groups, J. Combin. Theory Ser. A53 (1990), 128–142. Zbl0741.05035MR1031617
- [17] M. Rapoport, A positivity property of the Satake isomorphism, Manuscripta Math.101 (2000), 153–166. Zbl0941.22006MR1742251
- [18] M. Rapoport, A guide to the reduction modulo of Shimura varieties, Astérisque298 (2005), 271–318. Zbl1084.11029MR2141705
- [19] M. Rapoport & M. Richartz, On the classification and specialization of -isocrystals with additional structure, Compositio Math.103 (1996), 153–181. Zbl0874.14008MR1411570
- [20] T. A. Springer, Linear algebraic groups, 2nd éd., Progress in Mathematics, Birkhäuser, 2006. Zbl0927.20024MR632835
- [21] J. R. Stembridge, The partial order of dominant weights, Adv. Math.136 (1998), 340–364. Zbl0916.06001MR1626860
- [22] J. R. Stembridge, Minuscule elements of Weyl groups, J. Algebra235 (2001), 722–743. Zbl0973.17034MR1805477
- [23] E. Viehmann, The dimension of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup.39 (2006), 513–526. Zbl1108.14036MR2265677
- [24] J.-P. Wintenberger, Existence de -cristaux avec structures supplémentaires, Adv. Math.190 (2005), 196–224. Zbl1104.14013MR2104909
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.