On a conjecture of Kottwitz and Rapoport

Qëndrim R. Gashi

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 6, page 1017-1038
  • ISSN: 0012-9593

Abstract

top
We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur’s Inequality for all (connected) split and quasi-split unramified reductive groups. Our results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.

How to cite

top

Gashi, Qëndrim R.. "On a conjecture of Kottwitz and Rapoport." Annales scientifiques de l'École Normale Supérieure 43.6 (2010): 1017-1038. <http://eudml.org/doc/272229>.

@article{Gashi2010,
abstract = {We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur’s Inequality for all (connected) split and quasi-split unramified reductive groups. Our results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.},
author = {Gashi, Qëndrim R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Newton polygon; isocrystal; affine Deligne-Lusztig variety},
language = {eng},
number = {6},
pages = {1017-1038},
publisher = {Société mathématique de France},
title = {On a conjecture of Kottwitz and Rapoport},
url = {http://eudml.org/doc/272229},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Gashi, Qëndrim R.
TI - On a conjecture of Kottwitz and Rapoport
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 6
SP - 1017
EP - 1038
AB - We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur’s Inequality for all (connected) split and quasi-split unramified reductive groups. Our results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.
LA - eng
KW - Newton polygon; isocrystal; affine Deligne-Lusztig variety
UR - http://eudml.org/doc/272229
ER -

References

top
  1. [1] J. Arthur, A local trace formula, Publ. Math. I.H.É.S. 73 (1991), 5–96. Zbl0741.22013MR1114210
  2. [2] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics, Springer, 2002. Zbl0983.17001MR1890629
  3. [3] N. Bourbaki, Lie groups and Lie algebras, Chapters 7–9, Elements of Mathematics, Springer, 2005. Zbl1139.17002MR2109105
  4. [4] Q. R. Gashi, A vanishing result for toric varieties associated with root systems, Albanian J. Math.1 (2007), 235–244. Zbl1133.14054MR2367216
  5. [5] Q. R. Gashi, Vanishing results for toric varieties associated to GL n and G 2 , Transform. Groups13 (2008), 149–171. Zbl1160.14039MR2421320
  6. [6] Q. R. Gashi & T. Schedler, On dominance and minuscule Weyl group elements, preprint arXiv:0908.1091. Zbl1239.20045MR2772538
  7. [7] M. Görtz, T. J. Haines, R. E. Kottwitz & D. C. Reuman, Affine Deligne-Lusztig varieties in affine flag varieties, preprint arXiv:0805.0045. Zbl1229.14036
  8. [8] U. Görtz, T. J. Haines, R. E. Kottwitz & D. C. Reuman, Dimensions of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup.39 (2006), 467–511. Zbl1108.14035MR2265676
  9. [9] R. E. Kottwitz, Isocrystals with additional structure, Compositio Math.56 (1985), 201–220. Zbl0597.20038MR809866
  10. [10] R. E. Kottwitz, On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not.2003 (2003), 1433–1447. Zbl1074.14016MR1976046
  11. [11] R. E. Kottwitz & M. Rapoport, On the existence of F -crystals, Comment. Math. Helv.78 (2003), 153–184. Zbl1126.14023MR1966756
  12. [12] C. Lucarelli, A converse to Mazur’s inequality for split classical groups, J. Inst. Math. Jussieu3 (2004), 165–183. Zbl1054.14059MR2055708
  13. [13] C. Lucarelli, A converse to Mazur’s inequality for split classical groups, Thèse, University of Chicago, 2004. Zbl1054.14059MR2055708
  14. [14] B. Mazur, Frobenius and the Hodge filtration, Bull. Amer. Math. Soc.78 (1972), 653–667. Zbl0258.14006MR330169
  15. [15] B. Mazur, Frobenius and the Hodge filtration (estimates), Ann. of Math.98 (1973), 58–95. Zbl0261.14005MR321932
  16. [16] S. Mozes, Reflection processes on graphs and Weyl groups, J. Combin. Theory Ser. A53 (1990), 128–142. Zbl0741.05035MR1031617
  17. [17] M. Rapoport, A positivity property of the Satake isomorphism, Manuscripta Math.101 (2000), 153–166. Zbl0941.22006MR1742251
  18. [18] M. Rapoport, A guide to the reduction modulo p of Shimura varieties, Astérisque298 (2005), 271–318. Zbl1084.11029MR2141705
  19. [19] M. Rapoport & M. Richartz, On the classification and specialization of F -isocrystals with additional structure, Compositio Math.103 (1996), 153–181. Zbl0874.14008MR1411570
  20. [20] T. A. Springer, Linear algebraic groups, 2nd éd., Progress in Mathematics, Birkhäuser, 2006. Zbl0927.20024MR632835
  21. [21] J. R. Stembridge, The partial order of dominant weights, Adv. Math.136 (1998), 340–364. Zbl0916.06001MR1626860
  22. [22] J. R. Stembridge, Minuscule elements of Weyl groups, J. Algebra235 (2001), 722–743. Zbl0973.17034MR1805477
  23. [23] E. Viehmann, The dimension of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup.39 (2006), 513–526. Zbl1108.14036MR2265677
  24. [24] J.-P. Wintenberger, Existence de F -cristaux avec structures supplémentaires, Adv. Math.190 (2005), 196–224. Zbl1104.14013MR2104909

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.