Smoothness of Itô maps and diffusion processes on path spaces (I)
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 4, page 649-677
- ISSN: 0012-9593
Access Full Article
topHow to cite
topLi, Xiang-Dong, and Lyons, Terry J.. "Smoothness of Itô maps and diffusion processes on path spaces (I)." Annales scientifiques de l'École Normale Supérieure 39.4 (2006): 649-677. <http://eudml.org/doc/82697>.
@article{Li2006,
author = {Li, Xiang-Dong, Lyons, Terry J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {rough paths; Itô map; fractional like Brownian motion},
language = {eng},
number = {4},
pages = {649-677},
publisher = {Elsevier},
title = {Smoothness of Itô maps and diffusion processes on path spaces (I)},
url = {http://eudml.org/doc/82697},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Li, Xiang-Dong
AU - Lyons, Terry J.
TI - Smoothness of Itô maps and diffusion processes on path spaces (I)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 4
SP - 649
EP - 677
LA - eng
KW - rough paths; Itô map; fractional like Brownian motion
UR - http://eudml.org/doc/82697
ER -
References
top- [1] Andersson L., Driver B.K., Finite-dimensional approximations to Wiener measure and path integral formulas on manifolds, J. Funct. Anal.165 (2) (1999) 430-498. Zbl0943.58024MR1698956
- [2] Cartan E., Leçons sur la géométrie projective complexe, Les Grands Classiques Gauthier-Villars, 1931. Zbl0003.06801MR41456
- [3] Cartan E., La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile, Les Grands Classiques Gauthier-Villars, 1937. Zbl63.1227.02
- [4] Cartan E., Leçons sur la théorie des espaces à connexion projective, Les Grands Classiques Gauthier-Villars, 1937. Zbl0016.07603JFM63.0689.05
- [5] Coutin L., Qian Z., Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields122 (1) (2002) 108-140. Zbl1047.60029MR1883719
- [6] Dieudonné J., Foundations of Mordern Analysis, vol. I, Academic Press, New York, 1969. Zbl0176.00502MR349288
- [7] Driver B.K., A Cameron–Martin type quasi-invariance theorem for Brownian motion on a compact manifold, J. Funct. Anal.109 (1992) 272-376. Zbl0765.60064MR1194990
- [8] Driver B.K., Integration by parts and quasi-invariance for heat kernel measures on loop groups, J. Funct. Anal.149 (2) (1997) 470-547. Zbl0887.58062MR1472366
- [9] Dudley R.M., Norvaisa R., Differentiability of Six Operators on Nonsmooth Functions and p-Variation, Lecture Notes in Math., vol. 1703, Springer, Berlin, 1999. Zbl0973.46033MR1705318
- [10] Eells J., Elworthy K.D., Wiener integration on certain manifolds, in: Problems in Non-Linear Analysis (C.I.M.E., IV Ciclo, Varenna, 1970), Edizioni Cremonese, Rome, 1971, pp. 67-94. Zbl0226.58007MR346835
- [11] Itô K., The Brownian motion and tensor fields on Riemannian manifold, in: International Congress of Mathematicians 1963 (Stocholm), Inst. Mittag-Leffler, Djursholm, pp. 536–539. Zbl0116.36105MR176500
- [12] Klingenberg W., Lectures on Closed Geodesics, Springer, Berlin, 1978. Zbl0397.58018MR478069
- [13] Li X.D., Stochastic analysis and geometry on path and loop spaces, PhD thesis, Academia Sinica (Beijing) and University of Lisbon, 1999.
- [14] Li X.D., Existence and uniqueness of geodesics on path spaces, J. Funct. Anal.173 (2000) 182-202. Zbl0956.58018MR1760282
- [15] Li X.D., Connections, geodesics and measures on path and loop spaces, Preprint, 2002.
- [16] Li X.D., Sobolev spaces and capacities theory on path spaces over a compact Riemannian manifold, Probab. Theory Related Fields125 (1) (2003) 96-134. Zbl1018.58026MR1952459
- [17] Lyons T., Differential equations driven by rough signals. I. An extension of an inequality of L.C. Young, Math. Res. Lett.1 (4) (1994) 451-464. Zbl0835.34004MR1302388
- [18] Lyons T., Differential equations driven by rough signals, Revista Matemática Iberoamericana14 (2) (1998) 215-300. Zbl0923.34056MR1654527
- [19] Ledoux M., Lyons T., Qian Z., Lévy area of Wiener processes in Banach spaces, Ann. Probab.30 (2) (2002) 546-578. Zbl1016.60071MR1905851
- [20] Lyons T., Qian Z., A class of vector fields on path space, J. Funct. Anal.145 (1) (1997) 205-223. Zbl0877.58059MR1442166
- [21] Lyons T., Qian Z., Stochastic Jacobi fields and vector fields induced by varying area on path spaces, Probab. Theory Related Fields109 (4) (1997) 539-570. Zbl0903.60008MR1483599
- [22] Lyons T., Qian Z., System Control and Rough Paths, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2002. Zbl1029.93001MR2036784
- [23] Malliavin P., Hypoellipticity in infinite dimensions, in: Diffusion processes and related problems in analysis, vol. I (Evanston, IL, 1989), Birkhäuser Boston, 1990, pp. 17-31. Zbl0723.60059MR1110154
- [24] Malliavin P., Stochastic Analysis, Springer, Berlin, 1997. Zbl0878.60001MR1450093
- [25] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.