Proper groupoids and momentum maps : linearization, affinity, and convexity

Nguyen Tien Zung

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 5, page 841-869
  • ISSN: 0012-9593

How to cite

top

Zung, Nguyen Tien. "Proper groupoids and momentum maps : linearization, affinity, and convexity." Annales scientifiques de l'École Normale Supérieure 39.5 (2006): 841-869. <http://eudml.org/doc/82701>.

@article{Zung2006,
author = {Zung, Nguyen Tien},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {841-869},
publisher = {Elsevier},
title = {Proper groupoids and momentum maps : linearization, affinity, and convexity},
url = {http://eudml.org/doc/82701},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Zung, Nguyen Tien
TI - Proper groupoids and momentum maps : linearization, affinity, and convexity
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 5
SP - 841
EP - 869
LA - eng
UR - http://eudml.org/doc/82701
ER -

References

top
  1. [1] Alekseev A., Malkin A., Meinrenken E., Lie group valued moment maps, J. Differential Geom.48 (3) (1998) 445-495. Zbl0948.53045MR1638045
  2. [2] Bochner S., Compact groups of differentiable transformations, Ann. of Math. (2)46 (1945) 372-381. Zbl0063.00487MR13161
  3. [3] Bursztyn H., Crainic M., Weinstein A., Zhu C., Integration of twisted Dirac brackets, Duke Math. J.123 (3) (2004) 549-607. Zbl1067.58016MR2068969
  4. [4] Condevaux M., Dazord P., Molino P., Géométrie du moment, in: Séminaire Sud-Rhodanien I, Publications du Département de Mathématiques, Univ. Claude Bernard, Lyon I, 1988, pp. 131-160. MR1040871
  5. [5] Coste A., Dazord P., Weinstein A., Groupoïdes symplectiques, in: Publications du Département de Mathématiques. Nouvelle Série A, vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, Univ. Claude Bernard, Lyon, 1987, pp. i-ii, pp. 1–62. Zbl0668.58017MR996653
  6. [6] Crainic M., Fernandes R.L., Integrability of Lie brackets, Ann. of Math. (2)157 (2) (2003) 575-620. Zbl1037.22003MR1973056
  7. [7] Dufour J.-P., Zung N.T., Poisson Structures and Their Normal Forms, Progr. Math., vol. 242, Birkhäuser, Basel, 2005. Zbl1082.53078MR2178041
  8. [8] Duistermaat J.J., Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution, Trans. Am. Math. Soc.275 (1983) 417-429. Zbl0504.58020MR678361
  9. [9] Flaschka H., Ratiu T., A convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. École Norm. Sup. (4)29 (6) (1996) 787-809. Zbl0877.58025MR1422991
  10. [10] Giacobbe A., Convexity and multivalued Hamiltonians, Russ. Math. Surv.55 (3) (2000) 578-580. Zbl1027.53097MR1777360
  11. [11] Ginzburg V.L., Weinstein A., Lie–Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc.5 (2) (1992) 445-453. Zbl0766.58018MR1126117
  12. [12] Grove K., Karcher H., Ruh E.A., Group actions and curvature, Invent. Math.23 (1974) 31-48. Zbl0271.53044MR385750
  13. [13] Guillemin V., Sternberg S., Convexity properties of the moment mapping, Invent. Math.67 (1982) 491-513. Zbl0503.58017MR664117
  14. [14] Haefliger A., Groupoïdes d'holonomie et classifiants, Astérisque116 (1984) 70-97. Zbl0562.57012MR755163
  15. [15] Hilgert J., Neeb K.-H., Plank W., Symplectic convexity theorems and coadjoint orbits, Compos. Math.94 (2) (1994) 129-180. Zbl0819.22006MR1302314
  16. [16] Kirwan F., Convexity properties of the moment mapping. III, Invent. Math.77 (3) (1984) 547-552. Zbl0561.58016MR759257
  17. [17] Knop F., Convexity of Hamiltonian manifolds, J. Lie Theory12 (2) (2002) 571-582. Zbl1038.53080MR1923787
  18. [18] Koszul J.-L., Sur certains groupes de transformations de Lie, in: Géométrie différentielle. Colloques internationaux du CNRS, Strasbourg, 1953, CNRS, Paris, 1953, pp. 137-141. Zbl0101.16201MR59919
  19. [19] Lu J.-H., Momentum mappings and reduction of Poisson actions, in: Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., vol. 20, Springer, New York, 1991, pp. 209-226. Zbl0735.58004MR1104930
  20. [20] Mikami K., Weinstein A., Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci.24 (1) (1988) 121-140. Zbl0659.58016MR944869
  21. [21] Mineur H., Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant n intégrales premières uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr–Sommerfeld, Journal de l'École Polytechnique, Série III, 143ème année (1937) 173-191, 237–270. Zbl0017.04105
  22. [22] Moerdijk I., Pronk D.A., Orbifolds, sheaves and groupoids, 12 (1) (1997) 3-21. Zbl0883.22005MR1466622
  23. [23] Moerdijk I., Mrcun J., Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003, ix+173 pp. Zbl1029.58012MR2012261
  24. [24] Molino P., Orbit-like foliations, in: Geometric Study of Foliations (Tokyo, 1993), World Scientific, River Edge, NJ, 1994, pp. 97-119. MR1363720
  25. [25] Monnier Ph., Zung N.T., Levi decomposition for smooth Poisson structures, J. Differential Geom.68 (2) (2004) 347-395. Zbl1085.53074MR2144250
  26. [26] Palais R.S., On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2)73 (1961) 295-323. Zbl0103.01802MR126506
  27. [27] Sjamaar R., Convexity properties of the moment mapping re-examined, Adv. Math.138 (1) (1998) 46-91. Zbl0915.58036MR1645052
  28. [28] Weinstein A., Almost invariant submanifolds for compact group actions, J. Eur. Math. Soc. (JEMS)2 (1) (2000) 53-86. Zbl0957.53021MR1750452
  29. [29] Weinstein A., Linearization problems for Lie algebroids and Lie groupoids, Lett. Math. Phys.52 (1) (2000) 93-102. Zbl0961.22004MR1800493
  30. [30] Weinstein A., Poisson geometry of discrete series orbits, and momentum convexity for noncompact group actions, Lett. Math. Phys.56 (1) (2001) 17-30. Zbl1010.53060MR1848163
  31. [31] Weinstein A., Linearization of regular proper groupoids, J. Inst. Math. Jussieu1 (3) (2002) 493-511. Zbl1043.58009MR1956059
  32. [32] Xu P., Momentum maps and Morita equivalence, J. Diff. Geom.67 (2) (2004) 289-333. Zbl1106.53057MR2153080
  33. [33] Zung N.T., Levi decomposition of analytic Poisson structures and Lie algebroids, Topology42 (6) (2003) 1403-1420. Zbl1033.53069MR1981362

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.