Weighted Poincaré inequality and rigidity of complete manifolds

Peter Li; Jiaping Wang

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 6, page 921-982
  • ISSN: 0012-9593

How to cite


Li, Peter, and Wang, Jiaping. "Weighted Poincaré inequality and rigidity of complete manifolds." Annales scientifiques de l'École Normale Supérieure 39.6 (2006): 921-982. <http://eudml.org/doc/82704>.

author = {Li, Peter, Wang, Jiaping},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {weighted Poincaré inequality; complete manifolds; Ricci curvature},
language = {eng},
number = {6},
pages = {921-982},
publisher = {Elsevier},
title = {Weighted Poincaré inequality and rigidity of complete manifolds},
url = {http://eudml.org/doc/82704},
volume = {39},
year = {2006},

AU - Li, Peter
AU - Wang, Jiaping
TI - Weighted Poincaré inequality and rigidity of complete manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 6
SP - 921
EP - 982
LA - eng
KW - weighted Poincaré inequality; complete manifolds; Ricci curvature
UR - http://eudml.org/doc/82704
ER -


  1. [1] Agmon S., Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, 1982. Zbl0503.35001MR745286
  2. [2] Cai M., Galloway G.J., Boundaries of zero scalar curvature in the ADS/CFT correspondence, Adv. Theor. Math. Phys.3 (1999) 1769-1783. Zbl0978.53084MR1812136
  3. [3] Cao H., Shen Y., Zhu S., The structure of stable minimal hypersurfaces in R n + 1 , Math. Res. Lett.4 (1997) 637-644. Zbl0906.53004MR1484695
  4. [4] Cheng S.Y., Yau S.T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math.28 (1975) 333-354. Zbl0312.53031MR385749
  5. [5] Fefferman C., Phong D.H., The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math.34 (1981) 285-331. Zbl0458.35099MR611747
  6. [6] Fefferman C., Phong D.H., Lower bounds for Schrödinger equations, in: Conference on Partial Differential Equations (Saint Jean de Monts, 1982), Conf. No. 7, Soc. Math. France, Paris, 1982, 7 pp. Zbl0492.35057MR672274
  7. [7] Li P., Lecture Notes on Geometric Analysis, Lecture Notes Series, vol. 6, Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993. Zbl0822.58001MR1320504
  8. [8] Li P., Curvature and function theory on Riemannian manifolds, in: Surveys in Differential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch, and Singer, vol. VII, International Press, Cambridge, 2000, pp. 375-432. Zbl1066.53084MR1919432
  9. [9] Li P., Tam L.F., Complete surfaces with finite total curvature, J. Diff. Geom.33 (1991) 139-168. Zbl0749.53025MR1085138
  10. [10] Li P., Tam L.F., Harmonic functions and the structure of complete manifolds, J. Diff. Geom.35 (1992) 359-383. Zbl0768.53018MR1158340
  11. [11] Li P., Wang J., Complete manifolds with positive spectrum, J. Diff. Geom.58 (2001) 501-534. Zbl1032.58016MR1906784
  12. [12] Li P., Wang J., Complete manifolds with positive spectrum, II, J. Diff. Geom.62 (2002) 143-162. Zbl1073.58023MR1987380
  13. [13] Li P., Wang J., Comparison theorem for Kähler manifolds and positivity of spectrum, J. Diff. Geom.69 (2005) 43-74. Zbl1087.53067MR2169582
  14. [14] Nakai M., On Evans potential, Proc. Japan Acad.38 (1962) 624-629. Zbl0197.08604MR150296
  15. [15] Napier T., Ramachandran M., Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal.5 (1995) 809-851. Zbl0860.53045MR1354291
  16. [16] Schoen R., Yau S.T., Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comm. Math. Helv.39 (1981) 333-341. Zbl0361.53040MR438388
  17. [17] Schoen R., Yau S.T., Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math.92 (1988) 47-71. Zbl0658.53038MR931204
  18. [18] Varopoulos N., Potential theory and diffusion on Riemannian manifolds, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 821-837. Zbl0558.31009MR730112
  19. [19] Wang X., On conformally compact Einstein manifolds, Math. Res. Lett.8 (2001) 671-688. Zbl1053.53030MR1879811
  20. [20] Witten E., Yau S.T., Connectness of the boundary in the ADS.CFT correspondence, Adv. Theor. Math. Phys.3 (1999) 1635-1655. Zbl0978.53085MR1812133
  21. [21] Yau S.T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math.28 (1975) 201-228. Zbl0291.31002MR431040
  22. [22] Yau S.T., Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J.25 (1976) 659-670. Zbl0335.53041MR417452

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.